Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
shoppe pi pi pi pi
Xem chi tiết
Xuân Trà
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2022 lúc 13:58

undefined

Nhật Hạ
Xem chi tiết
Kiệt Nguyễn
20 tháng 9 2020 lúc 7:22

a) \(ĐK:x\ge0,x\ne9\)

Với\(x\ge0,x\ne9\)thì \(B=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left[\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right]\)\(=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left[\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right]\)\(=\left[\frac{2x-6\sqrt{x}}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3\sqrt{x}+9}{x-9}\right]:\left[\frac{\sqrt{x}+1}{\sqrt{x}-3}\right]\)\(=\left[\frac{3x-6\sqrt{x}-9}{x-9}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)\left(3\sqrt{x}-9\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\frac{3\sqrt{x}-9}{\sqrt{x}+3}\)

b) \(B< -1\Leftrightarrow\frac{3\sqrt{x}-9}{\sqrt{x}+3}< -1\Leftrightarrow\frac{3\sqrt{x}-9}{\sqrt{x}+3}+1< 0\Leftrightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)

Mà \(\sqrt{x}+3>0\)nên \(4\sqrt{x}-6< 0\Leftrightarrow\sqrt{x}< \frac{3}{2}\Leftrightarrow x< \frac{9}{4}\)

Vậy với \(0\le x< \frac{9}{4}\)thì B < -1

c) \(B=\frac{4\sqrt{x}-6}{\sqrt{x}+3}=\frac{4\left(\sqrt{x}+3\right)-18}{\sqrt{x}+3}=4-\frac{18}{\sqrt{x}+3}\)

Ta có: \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\Leftrightarrow\frac{18}{\sqrt{x}+3}\le6\Leftrightarrow-\frac{18}{\sqrt{x}+3}\ge-6\Leftrightarrow4-\frac{18}{\sqrt{x}+3}\ge-2\)

Vậy \(MinB=-2\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

Khách vãng lai đã xóa
Inequalities
20 tháng 9 2020 lúc 10:55

Nhìn nhầm câu c)

\(B=\frac{3\sqrt{x}-9}{\sqrt{x}+3}\)làm tương tự

Khách vãng lai đã xóa
Lil Shroud
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 2 2021 lúc 18:48

\(P=x^2-3x+\dfrac{1}{2x}+\dfrac{7}{4}+\dfrac{1}{4}\)

\(P=\dfrac{4x^3-12x^2+7x+2}{4x}+\dfrac{1}{4}=\dfrac{\left(x-2\right)\left(4x^2-4x-1\right)}{4x}+\dfrac{1}{4}\)

\(P=\dfrac{\left(x-2\right)\left[4x\left(x-2\right)+\dfrac{1}{2}\left(x-2\right)+\dfrac{7x}{2}\right]}{4x}+\dfrac{1}{4}\ge\dfrac{1}{4}\)

\(P_{min}=\dfrac{1}{4}\) khi \(x=2\)

SC__@
24 tháng 2 2021 lúc 18:51

\(P=x^2-3x+\dfrac{1}{2x}+2\)

\(P=x^2-4x+4+x+\dfrac{4}{x}-\dfrac{7}{2x}-2\)

\(P=\left(x-2\right)^2+x+\dfrac{4}{x}-\dfrac{7}{2x}-2\)

Áp dụng bđt cosi và bđt x \(\ge\)2

Ta có: P \(\ge0+2\sqrt{x\cdot\dfrac{4}{x}}-\dfrac{7}{2.2}-2=\dfrac{1}{4}\)

Dấu "=" xảy ra <=> x = 2

Vậy MinP = 1/4 <=> x = 2

Xuân Trà
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2022 lúc 13:37

a: \(P=\left(\dfrac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1+\sqrt{x}}{x+1}\)

\(=\dfrac{2\sqrt{x}+x+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{x+1}{x+\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

b: Thay \(x=9+2\sqrt{7}\) vào P, ta được:

\(P=\dfrac{\sqrt{9+2\sqrt{7}}+1}{9+2\sqrt{7}+\sqrt{9+2\sqrt{7}+1}}\simeq0,25\)

Phước Nhanh Nguyễn
Xem chi tiết
Nguyễn Thị BÍch Hậu
21 tháng 5 2015 lúc 22:07

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

Nguyễn Thị BÍch Hậu
21 tháng 5 2015 lúc 22:18

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

Lai  DUC Tuyen
22 tháng 8 2017 lúc 17:50

x=1 nhe nhap minh di ma ket ban voi minh nhe

Nguyễn Lê Nhật Linh
Xem chi tiết
Nhật Hạ
Xem chi tiết
Nguyễn Minh Đăng
20 tháng 9 2020 lúc 8:17

a) đk: \(x\ge0;x\ne9\)

Ta có:

\(B=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]\div\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+3\right)\sqrt{x}-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(B=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(B=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(B=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=\frac{3\sqrt{x}-9}{\sqrt{x}+3}\)

b) \(B< -1\Leftrightarrow\frac{3\sqrt{x}-9}{\sqrt{x}+3}+1< 0\)

\(\Leftrightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\) , mà \(\sqrt{x}+3\ge3>0\left(\forall x\right)\)

=> \(4\sqrt{x}-6< 0\)

\(\Leftrightarrow4\sqrt{x}< 6\)

\(\Rightarrow\sqrt{x}< \frac{3}{2}\)

\(\Rightarrow x< \frac{9}{4}\)

Vậy \(0\le x< \frac{9}{4}\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
20 tháng 9 2020 lúc 9:20

c) Ta có: \(B=\frac{3\sqrt{x}-9}{\sqrt{x}+3}=\frac{3\left(\sqrt{x}+3\right)-18}{\sqrt{x}+3}=3-\frac{18}{\sqrt{x}+3}\)

Vì \(\sqrt{x}+3\ge3\Rightarrow\frac{18}{\sqrt{x}+3}\le6\)

\(\Leftrightarrow3-\frac{18}{\sqrt{x}+3}\ge-3\)

\(\Rightarrow A\ge-3\)

Dấu "=" xảy ra khi: \(\sqrt{x}+3=3\Rightarrow x=0\)

Vậy \(Min_A=-3\Leftrightarrow x=0\)

Khách vãng lai đã xóa
Ko cần bít
Xem chi tiết
nhung Nguyễn
Xem chi tiết