Giải bất phương trình:
\(log12(2x+3)>log12(3x+1)(1)log12(2x+3)>log12(3x+1)(1) \)
Giải bất phương trình log 1 2 ( 2 x + 3 ) > log 1 2 ( 3 x + 1 )
A. - 1 3 < x < 2
B. - 1 3 < x < 5
C. x > 5
D. x > 2
Nghiệm của bất phương trình log 1 2 ( 2 x + 3 ) > log 1 2 ( 3 x + 1 ) là
Tìm tập nghiệm S của bất phương trình log 1 2 ( x + 1 ) < log 1 2 ( 2 x - 1 )
A. S = ( 1 2 ; 2 )
B. S = (-1; 2)
C. S = ( 2 ; + ∞ )
D. S = ( - ∞ , 2 )
Giải bất phương trình log 1 2 ( x 2 - 3 x + 2 ) ≥ - 1
A.
B.
C.
D.
Giải bất phương trình log 1 2 ( log 3 ( 2 x - 1 ) ) 1000 > 0
A. 1 2 < x < 2 v à x ≠ 1
B. 2 3 < x < 2 v à x ≠ 1
C. 1 <x <2
D. 1 < x < 3
Tìm nghiệm của bất phương trình log 1 2 ( 2 x - 1 ) + 1 > 0
A. 1 2 < x < 3 2
B. x > 3 2
C. x < 3 2
D. 0 < x < 3 2
Tìm tập nghiệm S của bất phương trình l o g 1 2 ( x 2 - 3 x + 2 ) ≥ - 1
A. S=[ 0;1) ∪ [2;3]
B. S=[0;1) ∪ [ 2;3]
C. S=[0;1] ∪ [2;3]
D. S=[0;1] ∪ [ 2;3]
Tìm tập nghiệm S của bất phương trình log 1 2 x + 1 < log 1 2 ( 2 x - 1 )
A. S = 1 2 ; 2
B. S = - 1 ; 2
C. S = 2 ; + ∞
D. S = - ∞ ; 2
Tập nghiệm của bất phương trình log 1 2 ( x 2 - 3 x + 3 ) > 0 là
A. (0; 1)
B. (1; 2)
C. (2; 3)
D. (3; 4)