Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x 0 . Giá trị của a + b - x 0 bằng:
A. 100
B. 30
C. 150
D. 50
Tìm số nghiệm nguyên của bất phương trình log 5 2 ( 3 x - 2 ) log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Gọi S là tập nghiệm của phương trình 2 ( 2 x - 1 ) - 5 . 2 ( x - 1 ) + 3 = 0 . Tìm S.
A. S = {1; log23 }
B. S = {0; log 2 3 }
C. S = {1; log 3 2 }
D. S = {1}
Tìm tập nghiệm S của bất phương trình log x + 1 ( - 2 x ) > 2
Tìm tập nghiệm S của bất phương trình 2 2 x + 1 - 3 . 2 x - 2 < 0
A. S=R
B. S=(-1,1)
C. S= - ∞ , 0
D. - ∞ , 1
Tìm tập nghiệm S của phương trình log 1 2 ( x + 2 ) - log 1 2 ( x ) > log 2 x 2 - x - 1
D. (1; 2]
A. 2 ; + ∞
B. (1;2)
C. (0;2)
D. (1; 2]
Tìm tập nghiệm của bất phương trình log ( x - 21 ) < 2 - log x
A. (-4; 25)
B. (0; 25)
C. (21; 25)
D. (25; +∞)
Biết tập nghiệm S của bất phương trình log3( 9x-2) < 1 là khoảng (a; b) . Tính hiệu số b- a
A. b- a= log910
B. b- a= 1
C.
D. 5
Tập nghiệm của bất phương trình log 2 x - 1 ≥ log x là
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng