tìm ĐKXD( giải chi tiết nha)
\(\frac{5}{\sqrt{x-1}-2}\)
\(\dfrac{\sqrt{x+1}}{\sqrt{x-2}}\)\(+\dfrac{2\sqrt{x}}{\sqrt{x+2}}\)\(+\dfrac{2+5\sqrt{x}}{4-x}\)
tìm điều kiện xác định(giải chi tiết hộ mình nha)
ĐKXĐ: \(\left\{{}\begin{matrix}x+1\ge0\\x-2>0\\x+2>0\\x\ge0\end{matrix}\right.\) và \(4-x\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x>2\\x>-2\\x\ge0\end{matrix}\right.\) và \(x\ne4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x\ne4\end{matrix}\right.\)
A=\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\)
Tìm đkxd và rút gọn
tìm GTLL của biểu thức A=\(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
GIẢI CHI TIẾT GIÚP MK NHA
ta có \(A=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
\(=\sqrt{\frac{1}{x}-\frac{1}{x^2}}+\sqrt{\frac{1}{y}-\frac{2}{y^2}}+\sqrt{\frac{1}{z}-\frac{3}{x^2}}=\sqrt{\frac{1}{4}-\left(\frac{1}{x^2}-2.\frac{1}{2}x+\frac{1}{4}\right)}+\sqrt{\frac{1}{8}-\left(\left(\sqrt{2}y\right)^2-2.\frac{\sqrt{2}}{2\sqrt{2}}x+\frac{1}{8}\right)}+\sqrt{\frac{1}{2}-\left(\left(\sqrt{3}z\right)^2-\frac{1}{z}+\frac{1}{12}\right)}\)
\(=\sqrt{\frac{1}{4}-\left(\frac{1}{x}-\frac{1}{2}\right)^2}+\sqrt{\frac{1}{8}-\left(\frac{\sqrt{2}}{y}-\frac{1}{2\sqrt{2}}\right)^2}+\sqrt{\frac{1}{12}-\left(\frac{\sqrt{3}}{z}-\frac{1}{2\sqrt{3}}\right)^2}\)
ta có \(\sqrt{\frac{1}{4}-\left(\frac{1}{x}-\frac{1}{2}\right)^2}\le\frac{1}{2}\) ; \(\sqrt{\frac{1}{8}-\left(\frac{\sqrt{2}}{y}-\frac{1}{2\sqrt{2}}\right)^2}\le\frac{1}{2\sqrt{2}}\); \(\sqrt{\frac{1}{12}-\left(\frac{\sqrt{3}}{z}-\frac{1}{2\sqrt{3}}\right)^2}\le\frac{1}{2\sqrt{3}}\)
vậy giá trị lớn nhất của A =\(\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\) khi x=; y=4;z=6
A=\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\)
aTìm đkxd
bRút gọn
c Tìm x để A<\(\frac{1}{3}\)
giải chi tiết bài này giùm mình nha!!!
giải pt
\(\sqrt{x-2008}+\sqrt{y-2009}+\sqrt{z-2010}=\frac{1}{2}\left(x+y+z\right)\)
™Câu 1: Tìm số nguyên x;y biết: \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
™Câu 2 : Tìm số nguyên x để \(A=\frac{\sqrt{x+1}}{\sqrt{x-3}}\)có giá trị là 1 số nguyên
™Các bạn giải chi tiết nha... mình cần sự giúp đỡ của các ßạn nhiều lắm !
Tìm x:
g) \(\sqrt{x+2}=-100\)
Giải chi tiết dùm mik nha. Thankss
\(\sqrt[]{x+2}=-100\)
vì \(\sqrt[]{x+2}\ge0\)
Nên phương trình trên vô nghiệm
vì
Nên phương trình trên vô nghiệm
Chúc bạn nha
tìm nghiệm nguyên duong của phương trình
\(2+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=y\)
các bản giải chi tiết ra giùm mình nha! khúc nào mà kiến thức vi diệu quá ấy , thì các bạn ghi lời giải thích giùm mình.
cảm ơn các bạn nhiều !!!!
Đkxđ: \(\hept{\begin{cases}x\ge-\frac{1}{4}\\y\ge2\end{cases}}\)
\(\Leftrightarrow2+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=y\Leftrightarrow2+\frac{1}{2}+\sqrt{x+\frac{1}{2}}=y\Leftrightarrow\sqrt{x+\frac{1}{2}}+\frac{5}{2}=y\)
do x,y nguyên dương nên \(\sqrt{x+\frac{1}{2}}+\frac{5}{2}\)nguyên dương\(\Leftrightarrow\sqrt{x+\frac{1}{2}}=\frac{k}{2}\)(K là số nguyên lẻ, \(k>1\))
\(\Rightarrow x=\frac{k^2-2}{4}\)
do \(k^2\)là số chính phương chia 4 dư 0,1 \(\Rightarrow x=\frac{k^2-2}{4}\notin Z\)
=> ko tồn tại cặp số nguyên dương x,y tmđkđb
tìm giá trị lớn nhất của biểu thức: \(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
CÁC BẠN GIẢI CHI TIẾT GIÚP MÌNH NHA! thanks