Giải bất phương trình sau:
\(\frac{-3}{x+2}< \frac{2}{3-x}\)
Giải các phương trình và bất phương trình sau:
a) \(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\)
b) \(\frac{x+2}{x^2-5x+6}-\frac{3}{x-2}=\frac{5}{x-3}\)
Thanks!!
\(a,\Leftrightarrow5\left(x-2\right)-15x\le9+10\left(x+1\right)\)
\(\Leftrightarrow5x-10-15x\le9+10x+10\)
\(\Leftrightarrow-20x\le29\)
\(\Leftrightarrow x\ge-1,45\)
Vậy ...........
\(b,\Rightarrow\left(x+2\right)-3\left(x-3\right)=5\left(x-2\right)\)
\(\Leftrightarrow x+2-3x+9-5x+10=0\)
\(\Leftrightarrow-7x+21=0\)
\(\Leftrightarrow x=3\)
Vậy ..............
\(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\Leftrightarrow\frac{5\left(x-2\right)}{30}-\frac{15x}{30}\le\frac{9}{30}+\frac{10\left(x+1\right)}{30}\)
\(\Leftrightarrow5x-10-15x-9-10x-10\le0\)
\(\Leftrightarrow-20x-29\le0\Leftrightarrow\left(-20x\right)\cdot\frac{-1}{20}\ge29\cdot-\frac{1}{20}\)
\(\Leftrightarrow x\ge-\frac{29}{20}\)
ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(\frac{x+2}{x^2-5x+6}-\frac{3}{x-2}=\frac{5}{x-3}\)
\(\Rightarrow\frac{x+2}{x-2x-3x+6}-\frac{3}{x-2}=\frac{5}{x-3}\)
\(\Rightarrow\frac{x+2}{\left(x-2\right)\left(x-3\right)}-\frac{3}{x-2}=\frac{5}{x-3}\)
\(\Rightarrow\frac{x+2}{\left(x-2\right)\left(x-3\right)}-\frac{3\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Rightarrow x+2-3x+9-5x+10=0\)
\(\Leftrightarrow-7x+21=0\Leftrightarrow x=3\) (nhân)
tập nghiệm của phương trình là S= 3
giải phương trình:\(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
giải bất phương trình: 2x+3<6-(3-4x)
1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow-7x+3=-4x-15\)
\(\Leftrightarrow-7x+4x=-15-3\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=6\)( tmđk )
Vậy x = 6 là nghiệm của phương trình
2) 2x + 3 < 6 - ( 3 - 4x )
<=> 2x + 3 < 6 - 3 + 4x
<=> 2x - 4x < 6 - 3 - 3
<=> -2x < 0
<=> x > 0
Vậy nghiệm của bất phương trình là x > 0
Giải bất phương trình sau: \(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}>3\)
ĐK : \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)
Đặt \(\sqrt{\frac{x+1}{x}}=t>0\)
\(bpt\Leftrightarrow\frac{1}{t^2}-2t>3\Leftrightarrow2t^3+3t^2-1< 0\Leftrightarrow\left(2t-1\right)\left(t+1\right)^2< 0\Leftrightarrow2t-1< 0\)(do \(\left(t+1\right)^2>0\))
\(\Leftrightarrow t< \frac{1}{2}hay\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Rightarrow\frac{x+1}{x}< \frac{1}{4}\)
Với x >0, ta có: \(\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow4\left(x+1\right)< 1\Leftrightarrow x< -\frac{3}{4}\left(trái.với.gt:x>0\right)\)
Với x<-1 ta có: \(\frac{x+1}{x}< \frac{1}{4}\Rightarrow4\left(x+1\right)>x\Rightarrow x>-\frac{3}{4}\Rightarrow-\frac{3}{4}< x< -1\)
Vậy nghiệm của hệ phương trình là: \(-\frac{3}{4}< x< -1\)
Giải các phương trình và bất phương trình sau:
a, \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
b, \(\frac{2x\left(x^2+1\right)-x^2-4}{3}+x\left(x^2-x+1\right)>\frac{5x^2+5}{3}\)
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
Giải bất phương trình và phương trình sau :
a, \(\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
b, \(\frac{x^2-4-\left|x-2\right|}{2}=x\left(x-1\right)\)
Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4
Giải bất phương trình và phương trình sau :
\(a,\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
\(b,\frac{x^2-4-\left|x-2\right|}{2}=x\left(x+1\right)\)
a,Giải phương trình sau : (2x + 3)(x-5)=42 +6x
b, Gải phương trình sau: \(\frac{x}{2x-6}-\frac{x}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
c,Gải bất phương trình sau và biểu diễn nghiệm trên trục số : \(\frac{12x+1}{12}\le\frac{9x+1}{3}-\frac{8x+1}{4}\)
Giải bất phương trình sau :
\(x-1-\frac{x-1}{3}\le\frac{2x+3}{2}+\frac{x}{3}-1\)
Mong mọi người giúp ạ !
Giải bất phương trình sau :
\(\left(\frac{1}{6}\right)^x+2\left(\frac{1}{3}\right)^x+3\left(\frac{1}{2}\right)^x
Đặt \(f\left(x\right)=\left(\frac{1}{6}\right)^x+2\left(\frac{1}{3}\right)^x+3\left(\frac{1}{2}\right)^x\)
Nhận thấy f(2) = 1. Mặt khác f(x) là tổng của các hàm số nghịch biến trên R. Do đó f(x) cũng là hàm nghịch biến. Từ đó ta có :
\(f\left(x\right)<1=f\left(2\right)\Leftrightarrow x>2\)
Vậy tập nghiệm của bất phương trình là
\(D=\left(2;+\infty\right)\)