Tìm GTLN của biểu thức: \(A=\left|x-1004\right|-\left|x+1003\right|\)
Tìm GTLN của biểu thức : \(A=\left|x-1004\right|-\left|x+1003\right|\)
https://hoc24.vn/hoi-dap/question/216689.html
Bạn tham khảo tại đây nhé: Câu hỏi của Vuong Ngoc Nguyen Ha (Gau Truc)
Chúc bạn học tốt!
Ta có :
\(\left|x-1004\right|-\left|x+1003\right|\)
\(\Rightarrow A\ge\left|x-1004-x-1003\right|=\left|\left(-1003\right)+\left(-1004\right)\right|=\left|-2007\right|=2007\)
Dấu " = " xảy ra khi \(\left(x-1004\right).\left(x-1003\right)\ge0\)
\(\Rightarrow x-1004\ge0\) \(;\) \(x+1003\ge0\) hoặc \(x-1004\le0\) \(;\) \(x+1003\le0\)
\(\Rightarrow x\ge1004\) hoặc \(x\le-1003\)
Vậy GTLN của A là 2007 khi \(x\ge1004\) hoặc \(x\le-1003\)
Tìm GTLN của biểu thức : A=\(\left|x-1004\right|\)-\(\left|x+1003\right|\)
Tìm GTNN của biểu thức: B=\(\left|x-2017\right|\)+\(\left|x+2018\right|\)
\(A=\left|x-1004\right|-\left|x+1003\right|\)
Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|\)
\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le2007\)
Vậy GTLN của A là 2007. Dấu "=" xảy ra khi \(x\ge1004\) hoặc \(x\le1003\).
- Câu B dùng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) làm tương tự nhé bạn!
Tìm GTLN của biểu thức
A= \(\left|x-1004\right|-\left|x+1003\right|\)
Giúp mk nha mầy bạn. Tối mk đi học rùi
Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\) ta có :
\(\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|=2007\)
Dấu \("="\) xảy ra khi \(x=-1013\)
Vậy \(GTLN=2007\) khi \(x=-1013\)
\(A=\left|x-1004\right|-\left|x+1003\right|\)
Áp dụng bất đẳng thức:
\(\left|X\right|-\left|Y\right|\le\left|X-Y\right|\)
Ta có:
\(A\le\left|x-1004-x+1003\right|\)
\(A\le1\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1004\ge0\Rightarrow x\ge1004\\x+1003\ge0\Rightarrow x\ge-1003\end{matrix}\right.\\\left\{{}\begin{matrix}x-1004< 0\Rightarrow x< 1004\\x+1003< 0\Rightarrow x< -1003\end{matrix}\right.\end{matrix}\right.\)
Vậy...
Tìm GTLN của A = \(\left|x-1004\right|-\left|x+1003\right|\)
Giải:
Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\) ta có:
\(\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|=2007\)
Dấu "=" xảy ra khi \(\Leftrightarrow x=-1013\)
Vậy \(MAX_A=2007\) tại \(x=-1013\)
Ta có:
\(\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x+1003\right|\)
hay \(A\le\left|-1\right|\)
\(\Rightarrow A\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1004\ge0\\x+1003\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1004\le0\\x+1003\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge1004\\x\le1003\end{matrix}\right.\\\left\{{}\begin{matrix}x\le1004\\x\ge1003\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x\ge1004\\x\le1003\end{matrix}\right.\)
=> vô lí.
TH2: \(\left\{{}\begin{matrix}x\le1044\\x\ge1003\end{matrix}\right.\)
\(\Rightarrow2013\le x\le2014\) (thỏa mãn)
Vậy với \(2013\le x\le2014\) thì A đạt GTLN và khi dó A=1.
Tìm giá trị lớn nhất của biểu thức
A = \(\left|x-1004\right|\)\(-\left|x+1003\right|\)
\(A=\left|x-1004\right|-\left|x+1003\right|\)
Áp dụng bất đẳng thức \(\left|a\right|-\left|b\right|\le\left|a-b\right|\) ta có:
\(A=\left|x-1004\right|-\left|x+1003\right|\le\left|\left(x-1004\right)-\left(x+1003\right)\right|\)
\(\Rightarrow A\le\left|x-1004-x-1003\right|\)
\(\Rightarrow A\le\left|-2007\right|\)
\(\Rightarrow A\le2007.\)
Đẳng thức xảy ra khi \(x\le-1003.\)
Vậy \(MAX_A=2007\) khi \(x\le-1003.\)
Chúc bạn học tốt!
Tìm GTLN của biểu thức : A=|x-1004|-|x+1003|
Ta có:
A = l x -1004l - lx+1003l
\(\Rightarrow\) A \(\ge\) l x-1004 - x-1003l = l(-1003)+(-1004)l = l-2007l = 2007
Dấu = xảy ra khi (x-1004).(x-1003) \(\ge0\)
\(\Rightarrow x-1004\ge0;x+1003\ge0\) hoặc \(x-1004\le0;x+1003\le0\)
\(\Rightarrow x\ge1004\) hoặc \(x\le-1003\)
Vậ GTLN của A là 2007 khi \(x\ge1004\) hoặc \(x\le1003\)
https://olm.vn/hoi-dap/question/602316.html
Ta có : |a|−|b|≤|a−b||a|−|b|≤|a−b|
Do đó |x−2014|−|x+2013|≤|x−2014−x−2013||x−2014|−|x+2013|≤|x−2014−x−2013| =4027=4027
Dấu "=" xảy ra khi x=-1013
Tìm GTLN của biểu thức: A = / x+ 1004 / - / x +1003 /
Ta có :
|x+1004|-|x+1003|=|1004+x|-|x-1003|
<=|1004+x-x-1003|
=|1004-1003|
=|1|
=1
Vậy : GTLN của biểu thức trên là 2015
Tìm GTLN của biểu thức: A = I x - 1004 I - I x + 1003 I
+)Xét x<−1003x<−1003 suy ra
{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004
Khi đó A=(−x+1004)−(−x−1003)=2007A=(−x+1004)−(−x−1003)=2007
+)Xét −1003≤x<1004−1003≤x<1004 suy ra
{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004
Khi đó A=(−x+1004)−(x+1003)=1−2xA=(−x+1004)−(x+1003)=1−2x
+)Xét x≥1004x≥1004 suy ra
{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003
Khi đó A=(x−1004)−(x+1003)=−2007A=(x−1004)−(x+1003)=−2007
Ta thấy: Với x<−1003x<−1003 thì A đạt giá trị lớn nhất là 2007
Vậy MaxA=2007MaxA=2007 khi x<−1003
Tìm GTLN của biểu thức: A = I x - 1004 I - I x + 1003 I
ÁP DỤNG BẤT ĐẲNG THỨC:|a|-|b|<=|a-b|
|x-1004|-|x+1003|<=|x-1004-x+1003|=1
vậy GTLN là 1