Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kiệt Nguyễn

Tìm GTLN của biểu thức: \(A=\left|x-1004\right|-\left|x+1003\right|\)

WAG.Warrix
1 tháng 6 2019 lúc 15:34

+)Xét x<−1003x<−1003 suy ra

{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004

Khi đó A=(−x+1004)−(−x−1003)=2007A=(−x+1004)−(−x−1003)=2007

+)Xét −1003≤x<1004−1003≤x<1004 suy ra

{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004

Khi đó A=(−x+1004)−(x+1003)=1−2xA=(−x+1004)−(x+1003)=1−2x

+)Xét x≥1004x≥1004 suy ra

{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003

Khi đó A=(x−1004)−(x+1003)=−2007A=(x−1004)−(x+1003)=−2007

Ta thấy: Với x<−1003x<−1003 thì A đạt giá trị lớn nhất là 2007

Vậy MaxA=2007MaxA=2007 khi x<−1003

~ Học tốt ~

Đào Trọng Luân
1 tháng 6 2019 lúc 15:41

Ta chứng minh: \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

\(\Leftrightarrow\left(\left|a\right|-\left|b\right|\right)^2\le\left(\left|a-b\right|\right)^2\)

\(\Leftrightarrow a^2-2\left|ab\right|+b^2\le a^2-2ab+b^2\)

\(\Leftrightarrow-\left|ab\right|\le-ab\)

\(\Leftrightarrow\left|ab\right|\ge ab\)(đúng) 

Dấu "=" khi ab > 0

Áp dụng:

\(A=\left|x-1004\right|-\left|x+1003\right|\)

\(\le\left|x-1004-x-1003\right|=2007\)

Dấu "=" khi \(\orbr{\begin{cases}x\ge1004\\x\le-1003\end{cases}}\)


Các câu hỏi tương tự
Thuỳ
Xem chi tiết
nhóm54
Xem chi tiết
Lê Huyền My
Xem chi tiết
Trần Đình Hoàng Quân
Xem chi tiết
Đinh Anh Thư
Xem chi tiết
dao xuan tung
Xem chi tiết
Nguyen Thi Yen Anh
Xem chi tiết
Bùi Anh Khoa
Xem chi tiết
I love BTS
Xem chi tiết