Cho Parabol y=x2 (P) và đường thẳng y=2mx-m+2 (d).
a) Với m=-1. Tìm toạ độ giao điểm của (d) và (P)
Trong mặt phẳng tọa độ cho đường thẳng và parabol
b)Tìm m để đường thẳng d cắt p tại 2 điểm có hoành độ x1,x2 thoả mãn:
2y1+4mx2-2x^2-3<0
Trong mặt phẳng toạ độ Oxy, cho đường thẳng (d): y = 2mx - m2 + 1 và parabol (P): y = x2
a) Tìm toạ độ hai giao điểm của (d) và (P) khi m = 2.
b) Tìm m để đường thẳng (d) cắt (P) tại 2 điểm có hoành độ x1, x2 thoả mãn: 2y1 + 4mx2 - 2m2 - 3 < 0
a: khi m=2 thì (d): y=4x-2^2+1=4x-3
PTHĐGĐ:
x^2-4x+3=0
=>x=1 hoặc x=3
Khi x=1 thì y=1
Khi x=3 thì y=9
b: PTHĐGĐ là;
x^2-2mx+m^2-1=0
Δ=(-2m)^2-4(m^2-1)=4>0
=>(P) luôn cắt (d) tại hai điểm phân biệt
2y1+4m*x2-2m^2-3<0
=>2(2mx1-m^2+1)+4m*x2-2m^2-3<0
=>4m*x1-2m^2+2+4m*x2-2m^2-3<0
=>-4m^2+4m*(x1+x2)-1<0
=>-4m^2+4m*(2m)-1<0
=>-4m^2+8m-1<0
=>\(\left[{}\begin{matrix}m< \dfrac{2-\sqrt{3}}{2}\\m>\dfrac{2+\sqrt{3}}{2}\end{matrix}\right.\)
Cho parabol (P) :y= \(\dfrac{1}{2}\)x2 và đường thẳng (d): y= -x+m (x là ẩn,m là tham số)
a. tìm toạ độ giao điểm của parabol (P) với đường thẳng (d) khi m=4
a: Khi m=4 thì (d): y=-x+4
PTHĐGĐ là:
1/2x^2=-x+4
=>x^2=-2x+8
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
Khi x=2 thì y=1/2*2^2=2
Khi x=-4 thì y=1/2(-4)^2=8
Cho parabol (P): y = -x2 và đường thẳng d: y = 2mx – 1 với m là tham số.
a) Tìm tọa độ giao điểm của d và (P) khi m = 1
a, Khi m = 1 ta có d : y = 2x – 1 và (P): y = –x2
Phương trình hoành độ giao điểm của d và (P) là:
Với x = − 1 + 2 ⇒ y = − 3 + 2 2
Với x = − 1 − 2 ⇒ y = − 3 − 2 2
Vậy các giao điểm là − 1 + 2 ; − 3 + 2 2 ; − 1 − 2 ; − 3 − 2 2
Cho Parabol (P) : y = x2 và đường thẳng (d) : y = mx - m +1
a. Tìm toạ độ giao điểm của (P) và (d) khi m = 4
b. Gọi x1 và x2 là hoành độ giao điểm của (P) và (d) . Tìm m sao cho x1 = 9 x2
a. Bạn tự giải
b. Pt hoành độ giao điểm: \(x^2=mx-m+1\Leftrightarrow x^2-mx+m-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1-m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\) \(\Rightarrow1=9\left(m-1\right)\Rightarrow m=\dfrac{10}{9}\)
TH2: \(\left\{{}\begin{matrix}x_1=m-1\\x_2=1\end{matrix}\right.\) \(\Rightarrow m-1=9.1\Rightarrow m=10\)
Trong mặt phẳng toạ độ cho parabol y=x^2 và đường thẳng y=2mx-m^2+m-1
.
a. Tìm toạ độ giao điểm của (P) và (d) khi .
b. Tìm để (P) cắt (d) tại hai điểm phân biệt.
c. Tìm để (P) và (d) có một điểm chung duy nhất.
d. Tìm để (P) cắt (d) tại điểm có hoành độ bằng 2.
Cho parabol (P): y = x2 và đường thẳng (d): y = 2mx + 3. Gọi x1; x2 là hoành độ giao điểm của (d) và (P). Tìm m để |x1| + 3|x2| = 6
Phương trình hoành độ giao điểm của \(\left(d\right)\) và \(\left(P\right)\) là:
\(x^2=2mx+3\Leftrightarrow x^2-2mx-3=0\) (1)
Phương trình (1) có hệ số \(a.c=1.\left(-3\right)=-3< 0\) nên (1) luôn có hai nghiệm phân biệt \(x_1,x_2\).
Theo hệ thức Viete ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-3\end{matrix}\right.\)
Ta có: \(\left|x_1\right|+3\left|x_2\right|=6\)
Ta có hệ:
\(\left\{{}\begin{matrix}x_1x_2=-3\\\left|x_1\right|+3\left|x_2\right|=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{3}{x_2}\\\left|\dfrac{3}{x_2}\right|+3\left|x_2\right|=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{3}{x_2}\\x_2^2-2\left|x_2\right|+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x_2=-1,x_1=3\\x_2=1,x_1=-3\end{matrix}\right.\)
Với \(x_1=3,x_2=-1\Rightarrow x_1+x_2=2\Rightarrow m=1\).
Với \(x_1=-3,x_2=1\Rightarrow x_1+x_2=-2\Rightarrow m=-1\)
Phương trình hoành độ giao điểm của và là:
(1)
Phương trình (1) có hệ số nên (1) luôn có hai nghiệm phân biệt .
Theo hệ thức Viete ta có:
Ta có:
Ta có hệ:
Với .
Với
Trên mặt phẳng tọa độ Oxy cho parabol (P): y=x2 và đường thẳng (d): y=2mx+1 (m là tham số)
1) Chứng minh rằng với mọi m thì đường thẳng (d) và parabol (P) cắt nhau tại 2 điểm phân biệt.
2) Gọi giao điểm của đường thẳng (d) và parabol (P) là A và B. Chứng minh tam giác OAB vuông.