cho 2 số hữu tỉ x và y
a) chứng tỏ nếu x<y thì a.d<b.c
b) nếu x<y thì a/b<a+c/b+d<c/d
cho x là một số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rằng x+ y và x .y là những số vô tỉ.
Giả sử x + y = z là một số hữu tỉ.
Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ
Hay y ∈ Q trái giả thiết y là số vô tỉ
Vậy x + y là số vô tỉ
Giả sử z = x.y là một số hữu tỉ
Suy ra y = z : x mà x ∈ Q, z ∈ Q
Suy ra y ∈ Q trái giả thiết y là số vô tỉ
Vậy xy là số vô tỉ
Bài 1.chứng tỏ rằng nếu căn x là một số hữu tỉ khác 0 thì X phải là một số hữu tỉ có dạng a mũ 2 phần b mũ 2 trong đó A, B là những số nguyên dương và a mũ 2 trên b mũ 2 là một phân số tối giản.
Bài 2.tìm gt nguyên x sao cho (3+√x) /(2-√x) có gt nguyên.
Bài 3. chứng tỏ rằng với số tự nhiên n lớn hơn 0 ta có
1+1/n²+1/(n+1)²=(n²+n+1)²/(n²(n+1)²)
Ta có:
\(VT=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+n^2+2n+1+n^2}{n^2\left(n+1\right)}\left(1\right)\)
\(VP=\frac{\left(n^2+n+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left[n\left(n+1\right)\right]}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left(n^2+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2n^2+2n}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+2n+1+2n^2}{n^2\left(n+1\right)^2}\left(2\right)\)
Từ (1) và (2)
=>đpcm
Vì \(\sqrt{x}\)là một số hữu tỉ
\(\Rightarrow\sqrt{x}\)có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\)là một phân số tối giản)
Vì \(\sqrt{x}\ge0\)và theo đề bài \(\frac{a}{b}\ne0\Rightarrow\frac{a}{b}\ge0\)
\(\Rightarrow a,b\)là những số nguyên dương (1)
Vì \(\sqrt{x}\)có dạng \(\frac{a}{b}\Rightarrow\left(\sqrt{x}\right)^2=\left(\frac{a}{b}\right)^2\Rightarrow x=\frac{a^2}{b^2}\)(2)
Vì \(\frac{a}{b}\)là phân số tối giản
\(\Rightarrow a,b\)là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(a,b)=1
Vì \(a^2\) có Ư(a), \(b^2\)có Ư(b)
\(\Rightarrow a^2,b^2\) là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(\(a^2,b^2\))=1
\(\Rightarrow\frac{a^2}{b^2}\) là phân số tối giản (3)
Từ (1), (2) và (3)
=>đpcm
Cho x là số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rằng : x + y và x.y là những số vô tỉ.
Giả sử x + y = z là một số hữu tỉ.
Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ
Hay y ∈ Q trái giả thiết y là số vô tỉ
Vậy x + y là số vô tỉ
Giả sử z = x.y là một số hữu tỉ
Suy ra y = z : x mà x ∈ Q, z ∈ Q
Suy ra y ∈ Q trái giả thiết y là số vô tỉ
Vậy xy là số vô tỉ
Cho x là một số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rắng x + y và x.y là nhứng số vô tỉ
1) a) Cho a, b, thuộc Z và b khác 0. Chứng tỏ rằng: a / -b = -a / b ; -a / -b = a/b
b) So sánh các số hữu tỉ sau : -2 / 5 và 9 / -20 ; 10 / 7 và -40 / -28
2) Cho số hữu tỉ a / b với b > 0. Chứng tỏ rằng :
a) Nếu a / b > 1 thì a > b và ngược lại nếu a > b thì a / b > 1
b) Nếu a / b < 1 thì a < b và ngược lại nếu a < b thì a / b < 1
3) a) Cho 2 số hữu tỉ a / b và c / d với b > 0, d > 0. Chứng tỏ rằng nếu a / b < c / d thì: a / b < a + c / b + d < c / d
b) Viết 4 số hữu tỉ xen giữa 2 số hữu tỉ -1 / 2 và -1 / 3
1) a) Cho a, b, thuộc Z và b khác 0. Chứng tỏ rằng: a / -b = -a / b ; -a / -b = a/b
b) So sánh các số hữu tỉ sau : -2 / 5 và 9 / -20 ; 10 / 7 và -40 / -28
2) Cho số hữu tỉ a / b với b > 0. Chứng tỏ rằng :
a) Nếu a / b > 1 thì a > b và ngược lại nếu a > b thì a / b > 1
b) Nếu a / b < 1 thì a < b và ngược lại nếu a < b thì a / b < 1
3) a) Cho 2 số hữu tỉ a / b và c / d với b > 0, d > 0. Chứng tỏ rằng nếu a / b < c / d thì: a / b < a + c / b + d < c / d
b) Viết 4 số hữu tỉ xen giữa 2 số hữu tỉ -1 / 2 và -1 / 3
2) Cho số hữu tỉ a / b với b > 0. Chứng tỏ rằng :
a) Nếu a / b > 1 thì a > b và ngược lại nếu a > b thì a / b > 1
b) Nếu a / b < 1 thì a < b và ngược lại nếu a < b thì a / b < 1
3) a) Cho 2 số hữu tỉ a / b và c / d với b > 0, d > 0. Chứng tỏ rằng nếu a / b < c / d thì: a / b < a + c / b + d < c / d
b) Viết 4 số hữu tỉ xen giữa 2 số hữu tỉ -1 / 2 và -1 / 3
cho x là số hữu tỉ khác 0 ; y là số vô tỉ . chứng tỏ rằng : x+y ; x-y ; x:y là những số vô tỉ
Giả sử x+y=z là một số hữu tỉ, khi đó ta có y=z-x
vì z và x thuộc Q nên z-x thuộc Q, do đó y thuộc Q. Điều này trái với đề bài.
Vậy x+y là số vô tỉ
Chứng minh tương tự x-y là số vô tỉ
Giả sử x.y=z là một số hữu tỉ, khi đó ta có y=z\x. Vì x, y thuộc Q nên z\x thuộc Q,
do đó y thuộc Q. Điều này trái với đề bài. Vậy x.y là một số vô tỉ
Chứng minh tương tự x:y là số vô tỉ
cho số hữu tỉ a/b khác 0 , với a,b thuộc Z và b khác 0. Chứng tỏ rằng: nếu a và b cùng dấu thì a/b là số hữu tỉ dương.
Xét hai trường hợp b nguyên dương và b nguyên âm.
_xét b nguyên dương. Vì a,b cùng dấu nên a nguyên dương. Ta có a/b> 0/b=0. Vậy a/b là số hữu tỉ dương.
_xét b nguyên âm
Ta có -b nguyên dương. Vì a,b cùng dấu nên a nguyên âm. Suy ra a nguyên dương. Do đó a/b= -a/-b> 0/-b = 0. Vậy a/b là số hưu tỉ dương