Giúp mk vs ạ 😂😂
Trong không gian với hệ trục toạ độ oxyz ,cho mặt cầu (s):(x+3)^2+y^2+(z-2)^2=m^2+4. Tìm các giá trị của m để mặt cầu (s) tiếp xúc với mp (oyz) là
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x + 3 ) 2 + y 2 + ( z - 2 ) 2 = m 2 + 4 . Tìm tất cả các giá trị thực của tham số m để mặt cầu (S) tiếp xúc với mặt phẳng (Oyz).
Trong không gian tọa độ Oxyz, cho mặt cầu (s): x - 1 2 + y 2 + ( z + 2 ) 2 = 2 và α : x + y - 4z + m = 0. Tìm các giá trị của m để tiếp xúc với (S).
Trong không gian với hệ tọa độ Oxyz cho mặt cầu S : x − 1 2 + y 2 + z + 2 2 = 2 và mặt phẳng α : x + y − 4 z + m = 0 . Tìm các giá trị của m để α tiếp xúc với (S)
A. m ≤ - 15 hoặc m ≥ − 3
B. - 15 ≤ m ≤ - 3
C. m = - 3 hoặc m = - 15
D. m = 2 3 hoặc m = - 12
Trong không gian tọa độ Oxyz, cho mặt cầu S : x - 1 2 + y 2 + z + 2 2 = 2 và α : x + y - 4 z + m = 0 . Tìm các giá trị của m để tiếp xúc với .
A. m ≤ - 15 h o ặ c m ≥ - 3
B. m = - 3 h o ặ c m = - 15
C. m = 2 3 h o ặ c m = - 12
D. - 15 ≤ m ≤ - 3
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) đi qua điểm A(2;-2;5) và tiếp xúc với các mặt phẳng α : x = 1 , β : y = - 1 , γ : z = 1 . Bán kính mặt cầu (S) bằng:
A. 3
B. 1
C. 3 2
D. 33
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là: ( x + 1 ) 2 + ( y - 4 ) 2 + ( z + 3 ) 2 = 36. Số mặt phẳng (P) chứa trục Ox và tiếp xúc với mặt cầu (S) là:
A. 0
B. 1
C. 2
D. Vô số
Đáp án A
Mặt cầu (S) có tâm I(-1;4;-3) và có bán kính R = 6. Gọi H là hình chiếu vuông góc của I trên trục Ox. Ta có H(-1;0;0) và IH=5.
Gọi K là hình chiếu vuông góc của I trên mặt phẳng (P). Ta có
d(I; (P)) = IK ≤ IH = 5 < R = 6
Do đó mặt phẳng (P) luôn cắt mặt cầu (S) theo một đường tròn. Vậy không tồn tại mặt phẳng (P) chứa Ox và tiếp xúc với (S)
Trong không gian với hệ trục tọa độ Oxyz , cho (P)là mặt phẳng qua đường thẳng d : x - 4 3 = y 1 = z + 4 - 4 và tiếp xúc với mặt cầu ( S ) : ( x - 3 ) 2 + ( y + 3 ) 2 + ( z - 1 ) 2 = 9 . Khi đó (P) song song với mặt phẳng nào sau đây?
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d : x - 2 2 = y - 1 = z 4 và mặt cầu (S): (x-1)2+ (y-2)2 + (z-1)2=2. Hai mặt phẳng (P), (Q) chứa d và tiếp xúc với (S). Gọi M và N là tiếp điểm. Độ dài đoạn thẳng MN bằng
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+y+z+m= 0 (m là tham số) và mặt cầu (S): ( x - 2 ) 2 + ( y + 1 ) 2 + z 2 = 16 . Tìm các giá trị của m để (P) cắt (S) theo giao tuyến là đường tròn có bán kính lớn nhất.
A. - 1 - 4 3 ≤ m ≤ - 1 + 4 3 .
B. m ≠ 0 .
C. m =1.
D. m = -1