Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quý Nguyễn
Xem chi tiết
Mai Trung Hải Phong
23 tháng 4 2023 lúc 19:10

a) Để tìm tọa độ tâm và bán kính của đường tròn ©, ta cần viết lại phương trình của nó dưới dạng chuẩn:
\begin{align*}
x^2 + y^2 - 2x + 6y - 2 &= 0 \
\Leftrightarrow (x-1)^2 + (y+3)^2 &= 14
\end{align*}
Vậy, tọa độ tâm của đường tròn © là $(1,-3)$ và bán kính của đường tròn © là $\sqrt{14}$.

b) Đường tròn có tâm $I(4,3)$ và đi qua $A(-4,1)$ có phương trình là:
$$(x-4)^2 + (y-3)^2 = (-4-4)^2 + (1-3)^2 = 20$$

c) Để tìm phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d: 3x+4y-4=0$ tại hai điểm $M$ và $N$ sao cho $MN=6$, ta có thể làm như sau:

Tìm giao điểm $H$ của đường thẳng $d$ và đường vuông góc với $d$ đi qua $I$.Tìm hai điểm $M$ và $N$ trên đường thẳng $d$ sao cho $HM=HN=3$.Xây dựng đường tròn (C') có tâm là $I$ và bán kính bằng $IN=IM=\sqrt{3^2+4^2}=5$.

Để tìm giao điểm $H$, ta cần tìm phương trình của đường thẳng vuông góc với $d$ đi qua $I$. Đường thẳng đó có phương trình là:
$$4x - 3y - 7 = 0$$
Giao điểm $H$ của đường thẳng này và $d$ có tọa độ là $(\frac{52}{25}, \frac{9}{25})$.

Để tìm hai điểm $M$ và $N$, ta có thể sử dụng công thức khoảng cách giữa điểm và đường thẳng. Khoảng cách từ điểm $H$ đến đường thẳng $d$ là:
$$d(H,d) = \frac{|3\cdot \frac{52}{25} + 4\cdot \frac{9}{25} - 4|}{\sqrt{3^2+4^2}} = \frac{1}{5}$$
Vậy, hai điểm $M$ và $N$ cách $H$ một khoảng bằng $\frac{3}{5}$ và $\frac{4}{5}$ đơn vị theo hướng vuông góc với $d$. Ta có thể tính được tọa độ của $M$ và $N$ như sau:
$$M = \left(\frac{52}{25} - \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{3}{5}\cdot 3\right) = \left(\frac{12}{25}, \frac{54}{25}\right)$$

$$N = \left(\frac{52}{25} + \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{4}{5}\cdot 3\right) = \left(\frac{92}{25}, \frac{27}{5}\right)$$
Cuối cùng, phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d$ tại hai điểm $M$ và $N$ sao cho $MN=6$ là:
$$(x-4)^2 + (y-3)^2 = 5^2$$

Quý Nguyễn
Xem chi tiết
Gamer Bee
23 tháng 4 2023 lúc 22:28
Quang Pham
23 tháng 4 2023 lúc 22:30

Tên quen ta :))

Nguyễn Lê Phước Thịnh
23 tháng 4 2023 lúc 23:14

a: (C): x^2+y^2-2x+6y-2=0

=>x^2-2x+1+y^2+6y+9-12=0

=>(x-1)^2+(y+3)^2=12

=>I(1;-3);\(R=2\sqrt{3}\)

b: I(1;-3); A(-4;1)

=>\(IA=\sqrt{\left(-4-1\right)^2+\left(1+3\right)^2}=\sqrt{34}\)

(C1): \(\left(x-1\right)^2+\left(y+3\right)^2=34\)

Quý Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 8:39

loading...

Vidia Hien
Xem chi tiết
Lê Mạnh Cường
Xem chi tiết
vo nhi
25 tháng 4 2018 lúc 20:00

de ***** tu lam dihihi

Lan Nhi Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2019 lúc 14:58

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 4 2019 lúc 6:06

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
24 tháng 5 2017 lúc 14:32

Phép dời hình và phép đồng dạng trong mặt phẳng