Cho tam giác ABC cân tại A. Trên BC lấy D, E sao cho BD = DE = EC. So sánh các góc: BAD, DAE, EAC.
Trên cạnh BC của tam giác ABC cân tại A, lấy hai điểm D và E sao cho BD = DE = EC. CMR: góc BAD = EAC < DAE.
Bạn tìm câu hỏi tương tự thì nó có bạn nhé
ngại gõ quá :)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath
Tam giác ABC cân tại A => AB = AC
=> Góc ABD = góc ACE
Xét tam giác ABD và tam giác ACE
AB = AC ( cmt )
Góc ABD = góc ACE ( cmt )
BD = CE ( gt )
=> Tam giác ABD = tam giác ACE ( c.g.c )
=> Góc BAD = góc CAE ( 2 góc tương ứng )
=> AD = AC ( 2 cạnh tương ứng )
Xét tam giác ADE và tam giác ACE
AD = AC ( cmt )
DE = EC( gt )
AE chung
=> tam giác ADE= tam giác ACE ( c.c.c )
=> góc DAE = góc EAC ( 2 góc tương ứng )
Ta có: góc BAD = góc EAC ( cmt )
Góc DAE = góc EAC ( cmt )
=> góc BAD = góc DAE = góc EAC
=> đề sai :))
cho tam giác abc cân tại a. trên bc lấy d và e sao cho góc bad= dae=eac so sánh
a) ab và ae
b) bd và de
a) (câu này làm vậy không biết được không..)
Ta có: \(\hept{\begin{cases}\widehat{BAD}=\widehat{DAE}\left(gt\right)\\AD:chung\left(gt\right)\end{cases}}\Rightarrow AB=AE\) (Giống như là dựa vào tạo góc..)
b) (Vẽ hình chắc chưa ổn lắm, bạn tự lấy thước ra chỉnh)
Xét tam giác ABE có AB = AE (cmt) => tam giác ABE cân tại A
=> AD vừa là đường cao vừa là trung tuyến
=> BD = DE
Cho tam giác abc cân tại a . trên cạnh bc lấy các điểm d , e sao cho bd=de=ec(d,e không trùng với b,c ) chứng minh rằng trong số 3 góc bad , dae , eac, thì dae là góc lớn nhất ?
1. Cho tam giác ABC có AB > AC, tia phân giác của góc BAC cắt BC tại D. So sánh CD và BD.
2. Cho tam giác ABC cân tại A. Trên cạnh đáy BC lấy các điểm D, E sao cho BD = DE = EC. So sánh góc BAD và góc DAE.
Bài 1:
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB>AC
nên BD>CD
Trên đáy BC của tam giác cân ABC lấy hai điểm D và E sao cho BD=DE=EC. Chứng minh rằng : góc BAD=góc EAC < góc DAE
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath
Xét ∆ABD và ∆ACE có: AB = AC (∆ABC cân tại A)
ABDˆ=ACEˆABD^=ACE^ (∆ABC cân tại A)
BD = EC (gt)
Do đó ∆ABD = ∆ACE (c.g.c) ⇒BADˆ=EACˆ⇒BAD^=EAC^
Ta có AEBˆ>Cˆ(AEBˆAEB^>C^(AEB^ là góc ngoài của tam giác ACD)
Cˆ=BˆC^=B^ (∆ABC cân tại A)
Nên AEBˆ>BˆAEB^>B^
∆ABE có AEBˆ>BˆAEB^>B^ => AB > AE
Trên tia đối của tia DA lấy điểm M sao cho DM = DA
Xét ∆DME và ∆DAB có DM = DA, MDEˆ=ADBˆMDE^=ADB^ (đối đỉnh), DE = BD (gt)
Do đó ∆DME = ∆DAB (c.g.c) ⇒ME=AB,DMEˆ=BADˆ⇒ME=AB,DME^=BAD^
Ta có ME > AE. ∆AEM có ME > AE ⇒DAEˆ>DMEˆ⇒DAE^>DME^
Nên DAEˆ>BADˆ=EACˆ.DAE^>BAD^=EAC^.
Vậy trong ba góc BAD, DAE, EAC thì góc DAE lớn nhất.
Trên bc của tam giác cân abc lấy d e sao cho bd=de=ec so sánh góc dae và góc eac
Cho tam giác ABC cân tại A. Trên cạnh BC lấy 2 điểm D ; E sao cho : góc BAD = góc DAE = góc EAC . Cm : BD > DE
Cho tam giác ABC cân tại A. Trên BC lấy D,E sao cho BD=DE=EC. Trên tia đối của DA lấy điểm M sao cho AD =AM
A) CM : BM<BA.
B) CM: Góc BAD bằng Góc EAC và bé hơn góc DAE
Bài 3: Trên cạnh đáy BC của tam giác cân ABC lấy điểm D và E sao cho BD = DE = EC. Chứng minh rằng ∠BAD=∠EAC < ∠ DAE
Xét ΔADB và ΔAEC có
AB=AC
góc B=góc C
BD=CE
=>ΔADB=ΔAEC
=>góc BAD=góc CAE