Cho a > 0, b > 0, c > 0 và a + b + c = 3. Tìm GTNN của A = 1/a + 1/b + 1/c
1, cho a>0 b>0 thỏa mãn a+b=5.Tòm GTNN của P=\(\frac{1}{a}\)+\(\frac{1}{b}\)
2/cho a>0,b>0,c>0 và a+b+c=1 Tìm GTNN của A=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1. Cho a,b,c>0 thỏa mãn 1/a+1/b+1/c=3.Tìm GTNN của P=1/a^2+1/b^2+1/c^2
2.Cho a,b,c khác 0 thỏa mãn a+b+c =0 và 1/a+1/b+1/c=7.Tính 1/a^2+1/b^2+1/c^2
3.Cho a<_b<_ c và a+b+c>0.Cm:a/b+b/c+c/a>_ b/a+c/b+a/c
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
Xét hiệu \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{c}-\frac{c}{b}-\frac{a}{c}\)
\(\frac{a^2c+b^2a+c^2b-b^2c-c^2a-a^2b}{abc}\)
\(\frac{\left(c-b\right)\left(a-c\right)\left(a-b\right)}{abc}\)
Ta thấy c -b \(\ge\)0 ; a - c \(\le\)0 ; a - b \(\le\)0 nên ( c - b ) ( a - c ) ( a - b )\(\ge\)0
Mà abc > 0 nên A \(\ge\)0 => ....
Cho a+b+c=3 và a, b, c>0. Tìm GTNN của biểu thức: \(P=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)
\(\Rightarrow3.P\ge9\Rightarrow P\ge3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a,b,c>0 và a+b+c=3. Tìm gtnn của P=\(\dfrac{2a+b+c}{a+1}+\dfrac{a+2b+c}{b+1}+\dfrac{a+b+2c}{c+1}\)
Ta có:
\(P=\dfrac{a+3}{a+1}+\dfrac{b+3}{b+1}+\dfrac{c+3}{c+1}\)
\(P=3+2.\left(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)
\(P\ge3+2.\dfrac{9}{a+b+c+3}=6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\).
Vậy \(min_P=6\), xảy ra khi \(a=b=c=1\)
Cho a,b,c >0 và a=max{a,b,c} .Tìm gtnn của :
\(S=\dfrac{a}{b}+2\sqrt{1+\dfrac{b}{c}}+3\sqrt[3]{1+\dfrac{c}{a}}\)
cho a,b,c>0 và a^2+b^2+c^2=1. Tìm GTNN của P= a^3/b+2c+ b^3/c+2a+c^3/a+2b
Ta có: \(1=a^2+b^2+c^2\ge ab+bc+ca\).
\(P=\dfrac{a^3}{b+2c}+\dfrac{b^3}{c+2a}+\dfrac{c^3}{a+2b}=\dfrac{a^4}{ab+2ca}+\dfrac{b^4}{bc+2ab}+\dfrac{c^4}{ca+2bc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}=\dfrac{1}{3\left(ab+bc+ca\right)}\ge\dfrac{1}{3}\)
Dấu \(=\) xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\).
cho a,b,c ϵ R thỏa mãn a≥1; b≥1; 0≤c≤1 và a+b+c=3. Tìm GTLN và GTNN của P = (a2+b2+c2)/ab+bc+ca
\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)
\(P_{min}=1\) khi \(a=b=c=1\)
\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)
Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)
\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)
\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)
\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)
1,Cho A=x/y+1 +y/x+1 bới x>0;y>0 và x+y=1
tìm GTNN,GTLN của A
2,Cho a+b+c=3 và a,b,c >0
Chứng minh \(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{3}{2}\)
1) Tìm GTNN :
Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
2) Áp dụng BĐT Svacxo ta có :
\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
2/ Áp dụng bđt Cô- si cho 2 số dương ta có :
\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)
Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra <=> a=b=c=1
\(A=\frac{x}{y+1}+\frac{y}{x+1}=\frac{x\left(x+1\right)+\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}\)
\(=\frac{x^2+x+y^2+y}{\left(x+1\right)\left(y+1\right)}=\frac{\left(x+y\right)^2-2xy+1}{xy+x+y+1}=\frac{-2xy+2}{xy+2}\)
\(=\frac{-2\left(xy+2\right)+6}{xy+2}=-2+\frac{6}{xy+2}\)
vì x,y>0 \(\Rightarrow xy\ge0\Rightarrow xy+2\ge2\Rightarrow\frac{6}{xy+2}\le\frac{6}{2}\)
\(\Rightarrow A\le-2+\frac{6}{2}=1\)
\(\Rightarrow maxA=1\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=0\end{cases}}\\\hept{\begin{cases}x=0\\y=1\end{cases}}\end{cases}}\)\(\Rightarrow maxA=1\)<=> x=0 và y=1 hoặc x=1 và y=0
Áp dụng bđt (a+b)2>=4ab ta có:
\(1^2=\left(x+y\right)^2\ge4xy\)
\(\Rightarrow xy\le\frac{1}{4}\Rightarrow xy+2\le\frac{1}{4}+2=\frac{9}{4}\)
\(\Rightarrow A\ge-2+6:\frac{9}{4}=\frac{2}{3}\)
\(\Rightarrow minA=\frac{2}{3}\Leftrightarrow\hept{\begin{cases}x=y\\x+y=1\end{cases}\Leftrightarrow x=y=\frac{1}{2}}\)
Cho a,b,c > 0 và a+b+c=3. Tìm GTNN của P=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Tìm GTLN và GTNN (nếu có) của M = \(\frac{4x+1}{x^2+3}\)
Cho a,b,c ? 0 và a + b + c = 3. Tìm GTNN của A = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng bdtd quen thuộc :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Chứng minh bđt nha ( quên mất )
Áp dụng bđt Cauchy :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)
Nhân từng vế của 2 bđt ta được đpcm
Dấu "=" khi \(a=b=c\)
\(M=\frac{4x+1}{x^2+3}\)
\(\Leftrightarrow Mx^2+3M=4x+1\)
\(\Leftrightarrow Mx^2-4x+3M-1=0\)(1)
*Nếu M = 0 thì x = -1/4
*Nếu M khác 0 thì (1) có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow4-M\left(3M-1\right)\ge0\)
\(\Leftrightarrow4-3M^2+M\ge0\)
\(\Leftrightarrow-1\le M\le\frac{4}{3}\)