tập nghiệm của bất phương trình \(\left\{{}\begin{matrix}x+3< 4+2x\\5x-3< 4x-1\end{matrix}\right.\)
Giải phương trình:
1. \(\left\{{}\begin{matrix}5x-2y=-9\\4x+3y=2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x+y-4=0\\x+2y-5=0\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}2x+3y-7=0\\x+2y-4=0\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}5x+6y=17\\9x-y=7\end{matrix}\right.\)
1)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=-27\\8x+6y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2y=5x+9\\23x=-23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-1;2\right)\)
2)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3y=-6\\x=5-2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
3)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=14\\3x+6y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=4-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
4)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x+6y=17\\54x-6y=42\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}59x=59\\y=9x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
Tìm m để hệ bất phương trình : có nghiệm, vô nghiệm
a)\(\left\{{}\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}7x-2\ge-4x+19\\2x-3m+2< 0\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}mx-1>0\\\left(3m-2\right)x-m>0\end{matrix}\right.\)
GIUPS EM ĐI MÀ NĂN NỈ ĐÓ
Giải phương trình:
1. \(\left\{{}\begin{matrix}4x-2y=3\\6x-3y=5\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x-3y=5\\4x+6y=10\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}3x-4y+2=0\\5x+2y=14\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}2x+5y=3\\3x-2y=14\end{matrix}\right.\)
1) \(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}3x-2y=4\\7x=14\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x=6y=10\end{matrix}\right.\)
=> Hệ có vô số nghiệm.
3)\(\left\{{}\begin{matrix}3x-4y=-2\\10x+4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}3x-4y=-2\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}6x+15y=9\\6x-4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}6x+15y=9\\19y=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
Tìm m để hệ bất phương trình vô nghiệm
a) \(\left\{{}\begin{matrix}3x+4>x+9\\1-2x\le m-3x+1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x+7\ge8x+1\\m+5< 2x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge x^2+7x+1\\2m\le8+5x\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}3x+5\ge x-1\\\left(x+2\right)^2\le\left(x-1\right)^2+9\\mx+1>\left(m-2\right)x+m\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}2\left(x-3\right)< 5\left(x-4\right)\\mx+1\le x-1\end{matrix}\right.\)
Tìm m để hệ bất phương trình có nghiệm
a) \(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3\left(x-6\right)< -3\\\dfrac{5x+m}{2}>7\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-1\le0\\x-m>0\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x-2\ge0\\\left(m^2+1\right)x< 4\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}m\left(mx-1\right)< 2\\m\left(mx-2\right)\ge2m+1\end{matrix}\right.\)
a, hệ\(\Leftrightarrow\)$\left \{ {{x>\frac{1}{2} } \atop {x<m+2}} \right.$
để hệ có nghiệm ⇒ m+2< $\frac{1}{2}$ ⇒ m<$\frac{-3}{2}$
1) Điều kiện của m để bất phương trình \(\left(m^2-m\right)x\ge1-m\) có nghiệm là :
2) Hệ bất phương trình \(\left\{{}\begin{matrix}2x+7< 8x-1\\-2x+m+5\ge0\end{matrix}\right.\) vô nghiệm khi:
3) Hệ bất phương trình \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge x^2+7x+1\\2m-5x\le8\end{matrix}\right.\) vô nghiệm khi:
4) Tập nghiệm của bất phương trình \(\left(x-1\right)\left(x^2-3x+2\right)< 0\) là :
5) Tập nghiệm của bất phương trình \(\left(x+3\right)\left(x^2+4x+3\right)\ge0\) là :
6) Tập nghiệm của bất phương trình \(\frac{x^2-x+1}{x-1}\ge0\) là :
Giải hệ phương trình sau bằng phương pháp thế
1) \(\left\{{}\begin{matrix}x-2y=4\\-2x+5y=-3\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x+2y=4\\-3x+y=7\end{matrix}\right.\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)
Bài 2: Giải các hệ phương trình sau bằng phương pháp thế
a) \(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3x-2y=11\\4x-5y=3\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}5x-4y=3\\2x+y=4\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}3x-y=5\\5x+2y=28\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x-2y=1\\2x-y=4\end{matrix}\right.\)
a: =>8x+2y=4 và 8x+3y=5
=>y=1 và 4x=2-1=1
=>x=1/4 và y=1
b: 3x-2y=11 và 4x-5y=3
=>12x-8y=44 và 12x-15y=9
=>7y=35 và 3x-2y=11
=>y=5 và 3x=11+2*y=11+2*5=21
=>x=7 và y=5
c: 5x-4y=3 và 2x+y=4
=>5x-4y=3 và 8x+4y=16
=>13x=19 và 2x+y=4
=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13
d: 3x-y=5 và 5x+2y=28
=>6x-2y=10 và 5x+2y=28
=>11x=38 và 3x-y=5
=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11
a: =>8x+2y=4 và 8x+3y=5
=>y=1 và 4x=2-1=1
=>x=1/4 và y=1
b: 3x-2y=11 và 4x-5y=3
=>12x-8y=44 và 12x-15y=9
=>7y=35 và 3x-2y=11
=>y=5 và 3x=11+2*y=11+2*5=21
=>x=7 và y=5
c: 5x-4y=3 và 2x+y=4
=>5x-4y=3 và 8x+4y=16
=>13x=19 và 2x+y=4
=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13
d: 3x-y=5 và 5x+2y=28
=>6x-2y=10 và 5x+2y=28
=>11x=38 và 3x-y=5
=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11
Hệ bất phương trình \(\left\{{}\begin{matrix}x^2-5x+4\le0\\x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\end{matrix}\right.\) có tập nghiệm biểu diễn trên trục số có độ dài bằng 1, với giá trị của m bằng ?