Tính giá trị biểu thức:
a) A= 3x^3y + 6x^2y^2 + 3xy^3 tại x= \(\frac{1}{2}\); y= \(\frac{-1}{3}\)
tính giá trị biểu thức
\(A=3x^3y+6x^2y^2+3xy^3\)tại \(x=\frac{1}{2};y=-\frac{1}{3}\)
giúp với
Thay x = \(\frac{1}{2}\) và y=\(\frac{-1}{3}\) vào biểu thức A ta có : A=\(3\times\left(\frac{1}{2}\right)^3+6\times\left(\frac{1}{2}\right)^2\times\left(-\frac{1}{3}\right)^2+3\times\frac{1}{2}\times\left(-\frac{1}{3}\right)^3\) A=\(\frac{3}{8}+\frac{1}{6}-\frac{1}{18}\) A=\(\frac{35}{72}\)
Bài 1: Tính giá trị biểu thức
a/ \(A=3x^3y+6x^2y^2+3xy\)tại \(x=\frac{1}{2};y=-\frac{1}{3}\)
b/ \(B=x^2y^2+xy+x^3+y^3\)tại \(x=-1;y=3\)
tính giá trị biểu thức
a) A=3\(x^3y\)+\(6x^2y^2\)+ \(3xy^3\)(tại x=\(\dfrac{1}{2}\); y=\(-\dfrac{1}{3}\))
b) B=\(x^2y^2\)+ xy+ \(x^3+y^3\)( tại x=-1; y=3)
a, Thay x = 1/2 ; y = -1/3 ta được
\(A=\dfrac{3.1}{8}\left(-\dfrac{1}{3}\right)+\dfrac{6.1}{4}.\left(\dfrac{1}{9}\right)+\dfrac{3.1}{2}\left(-\dfrac{1}{3}\right)^3\)
\(=-\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{3}{2\left(-27\right)}=-\dfrac{7}{72}\)
b, Thay x = -1 ; y = 3 ta được
\(B=9+\left(-1\right).3-1+27=32\)
bạn thay chỗ nào x là \(\dfrac{1}{2}\) còn chỗ nào y là \(\dfrac{-1}{3}\)nhé
còn như là 3\(x^3\)y thì thành là 3.\(x^3\).y nhé
mk lười nên ko giải ra cho bạn được
Tính giá trị của biểu thức:
a) N= (25x2 + 10xy + 4y2)(5x - 2y) tại x=1/5:y=1/2
b) Q= (x + 3y)(x2 - 3xy + 9y2) tại x=y=1/2
Giúp mik với ạ!
a: \(N=\left(5x\right)^3-\left(2y\right)^3=1^3-1^3=0\)
b: \(Q=x^3+27y^3=\dfrac{1}{8}+\dfrac{27}{8}=\dfrac{28}{8}=\dfrac{7}{2}\)
BÀI 9: TÍNH GIÁ TRỊ BIỂU THỨC
a) 2/3x^2y + 3x^2y + x^2y tại x=3 y=7
b) 1/2xy^2 + 1/3xy^2 + 1/6xy^2 tại x=3/4 y= -1/2
c) 2x^3y^3 + 10x^3y^3 - 20x^3y^3 tại x =1 y= -1
d) 2018xy^2 + 16xy^2 - 2016xy^2 tại x= -2 y= -1/3
a: A=2/3x^2y+4x^2y=14/3x^2y
=14/3*9*7=294
b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16
c: C=x^3y^3(2+10-20)=-8x^3y^3
=-8*1^3(-1)^3=8
d: D=xy^2(2018+16-2016)
=18xy^2
=18(-2)*1/9=-4
Tính giá trị biểu thức :
a, A=3x^3y +6x^2y^2 + 3xy^3 tại x = 1/2; y = -1/3
b, B= x^2y^2 + xy + x^3 + y^3 tại x = -1; y = 3
a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{4}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)
\(=-\dfrac{1}{8}+\dfrac{1}{6}+\dfrac{-1}{18}\)
\(=\dfrac{-1}{72}\)
b: \(B=\left(-1\right)^2\cdot3^2+\left(-1\right)\cdot3+\left(-1\right)^3+3^3\)
\(=9-3-1+27=36-4=32\)
1.Với giá trị nào của biến thì giá trị của biểu thức bằng 0
\(\frac{x+1}{7};\frac{3x+3}{5};\frac{3x\left(x-5\right)}{x-7};\frac{2x\left(x+1\right)}{3x+4}\)
2.Tính giá trị của các biểu thức sau:
\(A=\frac{a^2\left(a^2+b^2\right)\left(a^{\text{4}}+b^{\text{4 }}\right)\left(a^8+b^8\right)\left(a^2-3b\right)}{\left(a^{10}+b^{10}\right)}\)tại a=6;b=12
\(B=3xy\left(x+y\right)+2x^3y+2x^2y^2+5\)tại x+y=0
\(C=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+4\)tại x+y=0
Bài 1:Tính giá trị biểu thức:
\(A=3x^3y+6x^2y^2+3xy^3\) Tại x=\(\frac{1}{2}\);y=\(\frac{-1}{3}\)
\(B=x^2y^2+xy+x^3+y^3\) Tại x= -1;y=3
Tính giá trị của biểu thức:
a) \(3{x^2}y - \left( {3xy - 6{x^2}y} \right) + \left( {5xy - 9{x^2}y} \right)\) tại \(x = \frac{2}{3}\), \(y = - \frac{3}{4}\)
b) \(x\left( {x - 2y} \right) - y\left( {{y^2} - 2x} \right)\) tại \(x = 5\), \(y = 3\)
`a, = 3x^2y - 3xy + 6x^2y + 5xy - 9x^2y`
`= 2xy`.
Thay `x = 2/3; y = -3/4` vào BT:
`2 . 2/3 . -3/4 = -1.`
`b, x(x-2y) - y(y^2-2x)`
`= x^2 - 2xy - y^3 + 2xy`
`= x^2 - y^3`
Thay `x = 5; y =3` vào BT:
`= 5^2 - 3^3 = 25 - 27 = -2`
a) \(3x^2y-\left(3xy-6x^2y\right)+\left(5xy-9x^2y\right)\)
\(=3x^2y-3xy+6x^2y+5xy-9x^2y\)
\(=2xy\)
Thay \(x=\dfrac{2}{3},y=-\dfrac{3}{4}\) vào Bt ta có:
\(2\cdot\dfrac{2}{3}\cdot-\dfrac{3}{4}=-1\)
b) \(x\left(x-2y\right)-y\left(y^2-2x\right)\)
\(=x^2-2xy-y^3+2xy\)
\(=x^2-y^3\)
Thay \(x=5,y=3\) vào Bt ta có:
\(5^2-3^3=-3\)