\(\frac{373737.43-434343.37}{2^{2016}-2^{2015}}\)=.............
giá trị của biểu thức A=\(\frac{373737.43-434343.37}{2^{2016}-2^{2015}}\)
\(A=\frac{37.10101.43-43.10101.37}{2^{2015}\left(2-1\right)}=\frac{0}{2^{2015}}=0\)
Tìm giá trị của biểu thức A = \(\frac{373737.43-434343.37}{2^{2016}-2^{2015}}\)
(373737.43 - 434343.37) / (2^2016-2^2015)=37.10101.43 - 434343.37 / (2^2016-2^2015)
=(37.434343 - 434343.37) / 2^2016-2^2015= 0 / 2^2016-2^2015=0
Tinh bieu thuc sau : \(B=\frac{373737.43-434343.37}{2^{2016}-2^{2015}}\)
d.a thoi nhe
\(B=\frac{373737.43-434343.37}{2^{2016}-2^{2015}}=\frac{37.10101.43-43.10101.37}{2^{2016}-2^{2015}}=\frac{10101.\left(37.43-43.37\right)}{2^{2016}-2^{2015}}=\frac{10101.0}{2^{2016}-2^{2015}}=\frac{0}{2^{2016}-2^{2015}}=0\)
giá trị của biểu thức A=\(\frac{373737.43-434343.37}{2^{2016}-2^{2015}}\)là
ai nhanh ----------- 1lk
\(A=\frac{37.10101.43-43.10101.37}{2^{2015}\left(2-1\right)}=\frac{0}{2^{2015}}=0\)
\(\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}+1\right)\left(\frac{2105}{2016}+\frac{2016}{2017}+\frac{7}{22}\right)-\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}\right)\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{7}{22}+1\right)\)
so sánh
\(\left(\frac{2016-2015}{2016+2015}\right)^2\)và \(\frac{2016^2-2015^2}{2016^2+2015^2}\)
1) CMR : A=(n+2015)(n+2016) + n2 + n chia hết cho 2 với n ϵ N
2) So sánh :
P = \(\frac{2013}{2014^{2013}}+\frac{2014}{2015^{2014}}+\frac{2015}{2016^{2015}}+\frac{2016}{2017^{2016}}\) và
Q = \(\frac{2014}{2017^{2016}}+\frac{2013}{2016^{2015}}+\frac{2016}{2015^{2014}}+\frac{2015}{2014^{2013}}\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
Tính nhanh : \(\frac{2017+\frac{1}{2016}+\frac{2}{2015}+\frac{3}{2014}+...+\frac{2015}{2}+\frac{2016}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}}\)
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}{\frac{2016}{1}+\frac{2015}{2}+....+\frac{2}{2015}+\frac{1}{2016}}\)
rút gọn nha mọi người
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{\left(\dfrac{2015}{2}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}=\dfrac{1}{2017}\)