Cho tam giác abc đường cao AD BE CF cắt nhau tại H. Hc =6 hb=4. Tính tỉ số S fhe/S bhc
tam giác ABC có 3 đường cao AD BE CF cắt nhau tại H
A)c/m HFB đồng dạng HEC,HB*HE=HC*HF
B)EH*EB=EA*EC
C) CHO AB = 10 AD = 8 AC = 17 tính diện tích tam giác BHC.
a) Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHFB∼ΔHEC(g-g)
Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(HB\cdot HE=HC\cdot HF\)(đpcm)
cho tam giác ABC có 3 góc nhọn các đường cao AD , BE , CF cắt nhau tại H . CMR :
A) TAM GIÁC FHE ĐỒNG DẠNG VỚI BHC
b) H là giao điểm của các đường phân giác của tam giác DEF
a)tg AEB và tg AFC có
-^AEB=^AFC
-^BEA=^FAC
=>tg AEB đồng dạng tg AFC
=>AE/AF=AB/AC
=>AE. AC=AF.AB
b) AE/AF=AB/AC
=>AE/AB= AF/AC
tgAEF và tg ABC có
-^EAF=^BAC
- AE/AB= AF/AC
=>tg AEF đồng dạng tg ABC
c) tg AEB đồng dạng tg AFC
=>^ABE=^ ACF
hay ^FBH=^ECH
tg FHB và tg EHC c ó
-^FBH=^ECH
-^FHB=^EHC
=> tg FHB và tg EHC đồng dạng
=>FH/EH=HB/HC
tg FHE và tg BHC có
- FH/EH=HB/HC
-^FHE=^BHC(2 g óc đối đỉnh)
=> tg FHE và tg BHC đồng dạng
tg ABD và CBF có
-^ADB=^CFB(=90 độ)
-^ABD=^CBF
=> tg ABD và CBF đồng dạng
=>AB/BC=BD/BF
=>BF.AB=BC.BD
Tương tự chứng minh:CE.CA=CD.BC
=> BF.AB+CE.CA =BC.BD+CD.BC=BC(BD.CD)=BC^2
Cho tam giác nhọn ABC có ba đường cao AD, BE,CF cắt nhau tại H. Gọi M, N, P, Q, R, S lần lượt là trung điểm các đoạn thẳng BC, CA, AB, HA, HB, HC. Các đường trung trực của tam giác ABC cắt nhau tại O.
a) BHCK, AQMO là hình gì?
b) Chứng minh PQRS, MNQR, NPRS là hình chữ nhật
c) Chứng minh MQ, OH, RN đồng quy tại 1 điểm.
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
cho tam giác nhọn ABC các đường cao AD,BE,CF cắt nhau ở H .chứng minh rằng tam giác FHE đồng dạng với tam giác BHC\
CÁC BN ƠI GIÚP MK VS MK SẮP THI R LM ƠN GIÚP MK VS CÁC BN ƠI
Xét ΔFHB vuông tại F và ΔEHC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)
Do đó: ΔFHB\(\sim\)ΔEHC
Suy ra: HF/HE=HB/HC
hay HF/HB=HE/HC
Xét ΔFHE và ΔBHC có
HF/HB=HE/HC
\(\widehat{FHE}=\widehat{BHC}\)
Do đó: ΔFHE\(\sim\)ΔBHC
cho tam giác nhọn ABC các đường cao AD,BE,CF cắt nhau ở H .chứng minh rằng tam giác FHE đồng dạng với tam giác BHC\
CÁC BN ƠI GIÚP MK VS MK SẮP THI R LM ƠN GIÚP MK VS CÁC BN ƠI
Cho tam giác ABC có 3 góc nhọn (AB<AC) đường cao BE, CF,AD cắt nhau tại H. EF cắt BC tại M.
a) Chứng minh : MB x MC = ME x MF
b) Biết BD = 3cm, CD = 5cm , Stam giác ABC = 24cm2. Tính Stam giác BHC
Cho tam giác ABC có đường cao AD,BE,CF cắt nhau tại H.
CMR: HA + HB + HC ≥ 2(HD + HE + HF)
Đây là 1 trường hợp của BĐT hình học quan trọng: BĐT Erdos-Mordell
Cách chứng minh bài này y hệt như cách người ta chứng minh BĐT nói trên.
Có khoảng gần 20 cách gì đó, em kiếm trên google thử coi, vì BĐT này quá quen thuộc rồi nên mình sẽ ko chứng minh lại ở đây.
cho tam giác abc có góc a bằng 40 độ biết rằng 3 đường cao AD,BE,CF cắt nhau tại H tính góc BHC
Cho tam giác ABC nhọn có ba đường cao AD, BE, CF cắt nhau tại H. Chứng minh:
a) HA. HD=HB. HE=HC. HF
b) AHAD+BH.BE+CH.CF=(AB²+BC²+CA²)
c) H là giao điểm 3 đường phân giác của tam giác DEF.
Giải chi tiết
a: Xét ΔHFA vuông tại F và ΔHDC vuông tại D có
\(\widehat{FHA}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔHFA~ΔHDC
=>\(\dfrac{HF}{HD}=\dfrac{HA}{HC}\)
=>\(HF\cdot HC=HD\cdot HA\left(1\right)\)
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)
=>\(HF\cdot HC=HB\cdot HE\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HD=HF\cdot HC=HB\cdot HE\)
c: Xét tứ giác AFHE có \(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)
nên AFHE là tứ giác nội tiếp
Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)
nên BFHD là tứ giác nội tiếp
Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)
nên CEHD là tứ giác nội tiếp
Ta có: \(\widehat{EFH}=\widehat{EAH}\)(AEHF là tứ giác nội tiếp)
\(\widehat{DFH}=\widehat{DBH}\)(BFHD là tứ giác nội tiếp)
mà \(\widehat{EAH}=\widehat{DBH}\left(=90^0-\widehat{ECB}\right)\)
nên \(\widehat{EFH}=\widehat{DFH}\)
=>FH là phân giác của góc EFD
Ta có: \(\widehat{FEH}=\widehat{FAH}\)(AEHF là tứ giác nội tiếp)
\(\widehat{DEH}=\widehat{DCH}\)(ECDH là tứ giác nội tiếp)
mà \(\widehat{FAH}=\widehat{DCH}\left(=90^0-\widehat{ABD}\right)\)
nên \(\widehat{FEH}=\widehat{DEH}\)
=>EH là phân giác của góc FED
Xét ΔFED có
EH,FH là các đường phân giác
Do đó: H là giao điểm của ba đường phân giác trong ΔFED