Phân tích các biểu thức sau thành nhân tử.
a) \(10+2\sqrt{21}\)
b) \(12-2\sqrt{27}\)
c) \(11+2\sqrt{30}\)
d) \(14-2\sqrt{45}\)
Rút gọn các biểu thức sau :
a,\(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b,\(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c,\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d, D=\(\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\) \(\left(vớix\ne y,x\ne-y\right)\)
d: \(D=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\)
\(=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{3\left(x+y\right)}{2}\)
\(=\dfrac{3}{x-y}\)
Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu
b) \(27-10\sqrt{2}\)
c)\(18-8\sqrt{2}\)
d)\(4-2\sqrt{3}\)
e)\(6\sqrt{5}+14\)
f)\(20\sqrt{5}+45\)
G)\(7-2\sqrt{6}\)
b)\(27-10\sqrt{2}=5^2-2.5\sqrt{2}+2=\left(5-\sqrt{2}\right)^2\)
c)\(18-8\sqrt{2}=4^2-2.4\sqrt{2}+2=\left(4-\sqrt{2}\right)^2\)
d)\(4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
e)\(6\sqrt{5}+14=9+2.3\sqrt{5}+5=\left(3+\sqrt{5}\right)^2\)
f)\(20\sqrt{5}+45=5^2+2.5.2\sqrt{5}+20=\left(5+2\sqrt{5}\right)^2\)
g)\(7-2\sqrt{6}=6-2\sqrt{6}+1=\left(\sqrt{6}-1\right)^2\)
Phân tích các biểu thức sau thành các lũy thừa bậc hai:
a) \(8+2\sqrt{15}\) b) \(10-2\sqrt{21}\) c) \(12-\sqrt{140}\) d) \(5+\sqrt{24}\) e) \(14+6\sqrt{5}\) g) \(8-\sqrt{28}\)
phân tích đa thức thành nhân tử (với a b x y không âm, a> b)
a) xy - \(y\sqrt{x}\) + \(\sqrt{x}-1\)
b) \(\sqrt{ab}-\sqrt{by}+\sqrt{bx}+\sqrt{ay}\)
c) \(\sqrt{a+b}+\sqrt{a^2+b^2}\)
d) 12 - \(\sqrt{x}\) - x
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
Phân tích các biểu thức sau thành nhân tử.
a) \(x^2-2\)
b) \(3x^2-1\)
c) \(\sqrt{x^3}+\sqrt{y^3}\)
d) \(8\sqrt{x^3}-27\)
úi sao bạn cũng là quản lý giống mình à, mình trả lời câu hỏi của bạn có được không nhỉ
a) (x -\(\sqrt{2}\))(x+\(\sqrt{2}\))
b) (\(\sqrt{3}x\)-1)(\(\sqrt{3}x\)+1)
c) (\(\sqrt{x}+\sqrt{y}\))(x - \(\sqrt{xy}\)+ y)
d) (2\(\sqrt{x}\)- 3)(4x + 6\(\sqrt{x}\)+ 6)
phân tích thành nhân tử:
a. 11 + \(2\sqrt{10}\)
b. 12 - \(2\sqrt{11}\)
c. 23 + \(2\sqrt{22}\)
mình không biết bạn ơi
a. \(11+2\sqrt{10}=\left(\sqrt{10}+1\right)^2\)
b. \(12-2\sqrt{11}=\left(\sqrt{11}-1\right)^2\)
c.\(23+2\sqrt{22}=\left(\sqrt{22}+1\right)^2\)
a,\(\sqrt{8+2\sqrt{15}}\) -\(\sqrt{6+2\sqrt{15}}\)
b, \(\sqrt{17-2\sqrt{72}}-\sqrt{19+2\sqrt{18}}\)
c, \(\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}\)
d, \(\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}\)
e, \(\sqrt{10-2\sqrt{21}}-\sqrt{9-2\sqrt{14}}\)
\(a,\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{3}+\sqrt{5}-\left(\sqrt{5}+1\right)=\sqrt{3}-1\\ b,=3-2\sqrt{2}-\left(3\sqrt{2}+1\right)=2-5\sqrt{2}\\ c,=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\\ d,=\sqrt{11}+1-\left(\sqrt{11}-1\right)=2\\ e,=\sqrt{7}-\sqrt{3}-\left(\sqrt{7}-\sqrt{2}\right)=\sqrt{2}-\sqrt{3}\)
Tìm điều kiện xác định và phân tích các đa thức sau thành nhân tử:
\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)
\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)
\(C=\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(D=\sqrt{x^2+3x+2}+\sqrt{x+1}+2\sqrt{x+2}+2\)
\(A,ĐKXĐ:x;y\ge0\)
\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)
\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)
\(ĐKXĐ:x;y\ge0\)
\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)
\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)
\(ĐKXĐ:x;y\ge0\)
\(C=\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(=\left(\sqrt{x^3}+\sqrt{x^2y}\right)-\left(\sqrt{y^3}+\sqrt{xy^2}\right)\)
\(=\sqrt{x^2}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{y^2}\left(\sqrt{y}+\sqrt{x}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{x}-\sqrt{y}\right)\)
Rút gọn:
a. 11 + 2\(\sqrt{30}\)
b. 10 + 2\(\sqrt{21}\)
c. 6x - \(\sqrt{x}-1\)
d. 11 - 2\(\sqrt{45}\)
e. 4x - 3\(\sqrt{x}\) - 1
j. 12 - 2\(\sqrt{27}\)
\(a.11+2\sqrt{30}=6+2.\sqrt{6}.\sqrt{5}+5=\left(\sqrt{6}+\sqrt{5}\right)^2\)
\(b.10+2\sqrt{21}=7+2\sqrt{7}.\sqrt{3}+3=\left(\sqrt{7}+\sqrt{3}\right)^2\)
\(c.6x-\sqrt{x}-1=6x+2\sqrt{x}-3\sqrt{x}-1=2\sqrt{x}\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}+1\right)=\left(3\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\) \(d.14-2\sqrt{45}=14-6\sqrt{5}=9-2.3\sqrt{5}+5=\left(3-\sqrt{5}\right)^2\)
\(e.4x-3\sqrt{x}-1=4x-4\sqrt{x}+\sqrt{x}-1=4\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{x}-1\right)\left(4\sqrt{x}+1\right)\) \(j.12-2\sqrt{27}=9-2.3.\sqrt{3}+3=\left(3-\sqrt{3}\right)^2\)