Cho tam giác ABC vuông tại A có AB=5cm.Tính độ dài AC,BC biết rằng số đo chu vi và số đo diện tích của tam giác ABC bằng nhau.
(sưu tầm - Đề thi HK2 Quận Bình Tân 2019)
CHO TAM GIÁC ABC VUÔNG TẠI A có AB=5CM. Tính độ dài AC VÀ BC, BIẾT rằng số đo chu vi và số đo diện tích của tam giác ABC bằng nhau GIÚP EM VS Ạ;))))
Tam giác ABC vuông ở góc A có tổng số đo hai cạnh góc vuông bằng 7 cm,cạnh AB hơn cạnh AC 1cm,cạnh BC hơn cạnh AC 2cm. Hãy tính diện tích của 1 hình vuông có chu vi bằng chu vi tam giác ABC và diện tích hình vuông gấp mấy lần diện tích hình tam giác ABC?
Bài 1:Cho tam giác ABC có A=80 độ,B=40 độ.Tia phân giác của góc C cắt AB tại D.Tính số đo góc CDA;CDB.
Bài 2:Cho tam giác ABC=tam giác DEF có AB=3cm,DF= 4cm,EF=5cm.Tính chu vi của mỗi tam giác.
Bài 3:Cho tam giác ABC có AB=AC,D là trung điểm của BC(D thuộc BC).Chứng minh:
a)Tam giác ABD= tam giác ACD b)BAD=CAD c)AD vuông góc BC
LƯU Ý:NHỮNG BÀI TRÊN KO CÓ BÀI NÀO CÓ HÌNH CẢ
Bài 3:
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
b: Ta có: ΔABD=ΔACD
nên \(\widehat{BAD}=\widehat{CAD}\)
c: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
Tam giác ABC vuoing góc ở A có tổng số đo hai cạnh góc vuông bằng 7cm, cạnh AB hơn cạnh AC 1cm. Cạnh BC lớn hơn cạnh AC 2cm
a) hãy tính diện tích của một hình vuông có chu vi bằng chu vi tam giác vuông ABC
b) diện tích hình vuông ấy gấp diện tích tam giác vuông ABC bao nhiêu lần
mn giup mik vs ak, mik can gap, mik camon ak
ai nhanh nhat miktick choa ak, giup mik vs dc ko ak vi mik can gap
Bài 1: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 75cm, Cạnh BC là 45cm. Hỏi:
a) Tổng độ dài của cạnh AB và AC là bao nhiêu?
b) Tính diện tích tam giác vuông ABC, biết cạnh AB hơn cạnh AC là 4cm.
Bài 2: Cho tam giác ABC có chu vi 67cm, cạnh AB và AC có tổng độ dài 47 cm.
a) Tính độ dài BC.
b) Tính diện tích tam giác ABC, biết chiều cao AH là 15cm.
Bài 3: Một tam giác vuông có cạnh góc vuông thứ nhất là 24cm, cạnh góc vuông thứ hai bằng 5/8 cạnh góc vuông thứ nhất. Tính diện tích tam giác vuông đó.
Bài 4: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 90cm, Cạnh BC là 45cm. Hỏi:
a) Tổng độ dài của cạnh AB và AC là bao nhiêu?
b)Tính diện tích tam giác vuông ABC, biết cạnh AC bằng 4/5 cạnh AB.
Bài 1:
a: AB+AC=75-45=30(cm)
b: AB=(30+4):2=17(cm)
=>AC=13cm
\(S=17\cdot13=221\left(cm^2\right)\)
Bài 2:
a: BC=67-47=20(cm)
b: \(S=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)
Cho hình tam giác ABC vuông tại A có chu vi bằng 144cm. Độ dài cạnh AB bằng 3/4 độ dài cạnh AC, độ dài cạnh AC bằng 4/5 độ dài cạnh BC. Tính diện tích của tam giác ABC.
Lời giải:
Coi độ dài cạnh AB là 3 phần thì độ dài cạnh AC là 4 phần, độ dài cạnh BC là 5 phần.
Tổng số phần bằng nhau: $3+4+5=12$ (phần)
Độ dài cạnh AB: $144:12\times 3=36$ (cm)
Độ dài cạnh AC: $144:12\times 4=48$ (cm)
Diện tích tam giác $ABC$: $36\times 48:2=864$ (cm2)
Bài 1 Cho tam giác vuông có số đo hai cạnh góc vuông lần lượt là 3cm và 4cm Hãy tính số đo của các cạnh còn lại
Bài 2 Cho tam giác ABC có cạnh AB dài 25cm Trên cạnh BC lấy hai điểm M N sao cho độ dài đoạn BM bằng 2 phần 6 độ dài BC độ dài đoạn BC = 1,6 độ dài đoạn BC biết chiều cao kẻ từ B của tam giác a m b là 12cm Tìm diện tích hình tam giác ABC tính diện tích hình tam giác amn
Cho tam giác ABC vuông tại A đường cao AH biết AB = 6 cm BC = 10 cm a) Tính độ dài đường cao AH và số đo B^ của tam giác ABC b) tính diện tích tam giác AHB
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64\)
=>\(AC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot10=6^2=36\)
=>BH=36/10=3,6(cm)
ΔAHB vuông tại H
=>\(S_{HAB}=\dfrac{1}{2}\cdot HA\cdot HB=\dfrac{1}{2}\cdot4,8\cdot3,6=8,64\left(cm^2\right)\)
a) Để tính độ dài đường cao \(AH\) và số đo \(\angle B\), chúng ta có thể sử dụng các quy tắc trong tam giác vuông.
Chúng ta biết rằng trong tam giác vuông, độ dài của đường cao \(AH\) từ đỉnh vuông \(A\) xuống cạnh huyền \(BC\) có thể được tính bằng công thức:
\[AH = \frac{1}{2} \times BC\]
Trong trường hợp này:
\[AH = \frac{1}{2} \times 10 \, \text{cm} = 5 \, \text{cm}\]
Số đo của góc \(\angle B\) có thể được tính bằng cách sử dụng hàm tan trong tam giác vuông:
\[\tan B = \frac{AH}{AB}\]
\[\angle B = \arctan\left(\frac{AH}{AB}\right)\]
Trong trường hợp này:
\[\tan B = \frac{5}{6}\]
\[\angle B = \arctan\left(\frac{5}{6}\right)\]
Bạn có thể sử dụng máy tính để tính toán giá trị chính xác của \(\angle B\).
b) Để tính diện tích tam giác \(AHB\), chúng ta sử dụng công thức diện tích tam giác:
\[S_{AHB} = \frac{1}{2} \times \text{độ dài } AH \times \text{độ dài } AB\]
Trong trường hợp này:
\[S_{AHB} = \frac{1}{2} \times 5 \, \text{cm} \times 6 \, \text{cm} = 15 \, \text{cm}^2\]
Vậy, độ dài của đường cao \(AH\) là \(5 \, \text{cm}\), số đo của góc \(\angle B\) có thể được tính, và diện tích tam giác \(AHB\) là \(15 \, \text{cm}^2\).
Bài 7: a, Cho tam giác ABC vuông tại A có AB 3 AC 4 = và BC = 5. Tính độ dài AB, AC b, Tính độ dài cạnh huyền biết độ dài hai cạnh góc vuông là 6 và 7 c, Tính góc ở đỉnh của tam giác cân biết số đo góc ở đáy là 200 d, Tính số đo góc ở đáy tam giác cân biết số đo góc ở đỉnh là 600
b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)
c: Số đo góc ở đỉnh là:
\(180-2\cdot20^0=140^0\)
d: Số đó góc ở đáy là:
\(\dfrac{180^0-60^0}{2}=60^0\)