Tìm gtnn: P=4x(x+1)-2/2x+1/+2020
Tìm gtnn: P=4x(x+1)-2/2x+1/+2020
\(P=4x^2+4x+1-2\left|2x+1\right|+2019\)
\(P=\left|2x+1\right|^2-2\left|2x+1\right|+1+2018\)
\(P=\left(\left|2x+1\right|-1\right)^2+2018\ge2018\)
\(\Rightarrow P_{min}=2018\) khi \(\left|2x+1\right|-1=0\Rightarrow\left[{}\begin{matrix}2x+1=1\\2x+1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Tìm giá trị của x để biểu thức B = \(\frac{x^2-4x+2020}{x^2-2x+1}\)nhận GTNN
@ Quỳnh hentaiz :))
\(B=\frac{\left(x-2\right)^2+2016}{\left(x-1\right)^2}=\frac{\left(t-1\right)^2+2016}{t^2}=\frac{t^2-2t+2017}{t^2}\)
\(=1-\frac{2}{t}+\frac{2017}{t^2}=1-2a+2017a^2=2017\left(a^2-2.\frac{1}{4034}+\frac{1}{4034}^2\right)-\frac{2017}{4034^2}+1\)
\(=2017\left(a-\frac{1}{4034}\right)^2+1-\frac{1}{2017^3}\ge1-\frac{1}{2017^3}\)
tự xét dấu =
\(B=\frac{\left(x-2\right)^2+2016}{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{\left(t-1\right)^2+2016}{1^2}\)
\(\Leftrightarrow\frac{t^2-2t+2017}{t^2}\)
\(\Leftrightarrow1-\frac{2}{t}+\frac{2017}{t^2}\)
\(\Leftrightarrow1-2a+2017a^2\)
\(\Leftrightarrow a^2-2\times[\frac{1}{4034}+\frac{1^2}{4034}]-\frac{2017}{4034^2}+1\)
\(\Leftrightarrow2017\left(a-\frac{1}{4034}\right)^2+1-\frac{1}{2017}^3\)
phần cuối tự làm nha
Tìm GTNN hoặc GTLN của biểu thức sau:
H= 2020 / x^2 +2x+6
I= 15/ 6x- x^2 -14
M= (8x+3)/ (4x^2 +1)
có ai làm NY tui hem
tìm GTNN của biểu thức
a)B= 2x^2-2xy+5y^2+5
b)C= 5x^2+5y^2+8xy+2y-2x+2020
c)D= 5x^2+y^2+z^2-4x-2xy-z-1
tìm GTNN của biểu thức : |2x+1|+|x-y+1|, b: |x+2|+1/2.|2x-1| tìm GTLN của biểu thức : |3x+2|-|2020-3x| các cao nhân giúp em với ạ
a, Tìm GTNN: A = \(\dfrac{x^2-2x+2013}{x^2}\) ; x>0
b, Tìm GTLN và GTNN của: B = \(\dfrac{4x+1}{4x^2+2}\)
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
Tìm GTNN y= 4x\(^2\)- 3x + \(\frac{1}{4}x\)+2020
tìm gtnn các biểu thức s a)x2+2x+2020
b)m2+4m-1
c)m2+m
d)x-2căn x+10
e)4x-8 căn x +2020
\(a,=x^2+2x+1+2019=\left(x+1\right)^2+2019\ge2019\) dấu"=" xảy ra<=>x=-1
b,\(=m^2+2.2m+4-5=\left(m+2\right)^2-5\ge-5\) dấu"=" xảy ra<=>m=-2
c, \(=x-2\sqrt{x}+10=x-2\sqrt{x}+1+9=\left(\sqrt{x}-1\right)^2+9\ge9\)
dấu"=" xảy ra<=>x=1
b, \(4x-8\sqrt{x}+2020=4x-2.2.2\sqrt{x}+4+2016=\left(2\sqrt{x}-2\right)^2+2016\ge2016\)
dấu"=" xảy ra<=>x=1
a) Ta có: \(x^2+2x+2020\)
\(=x^2+2x+1+2019\)
\(=\left(x+1\right)^2+2019\ge2019\forall x\)
Dấu '=' xảy ra khi x=-1
b) Ta có: \(m^2+4m-1\)
\(=m^2+4m+4-5\)
\(=\left(m+2\right)^2-5\ge-5\forall m\)
Dấu '=' xảy ra khi m=-2
c) Ta có: \(m^2+m\)
\(=m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}\)
\(=\left(m+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall m\)
Dấu '=' xảy ra khi \(m=-\dfrac{1}{2}\)
tìm GTNN của biểu thức
A=2x2+4y2-4x+4xy+2020
Ta có
A=2x2+4y2-4x+4xy+2020
=(x^2+4y^2+4xy)+(x^2-4x+4)+2016
=(x+2y)^2+(x-2)^2+2016
Thấy
(x+2y)^2>=0 với mọi x,y
(x-2)^2>=0 với mọi x
=>(x+2y)^2+(x-2)^2+2016>=2016 với mọi x,y
Hay Min A>=2016
Dấu "=" xảy ra<=>(x+2y)^2=0 và(x-2)^2=0
<=>x=2;y=-1
Vậy Min A=2016 tại x=2 và y=-1