Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Huyền Trang
Xem chi tiết
Kẻ Huỷ Diệt
31 tháng 3 2016 lúc 21:34

P đạt giá trị lớn nhất khi và chỉ khi (x + 2003)2 nhỏ nhất

 mà (x + 2003)\(\ge\) 0

 => GTNN của (x + 2003)là 1 (vì nếu bằng 0 thì giá trị của biểu thức không XĐ)

     (x + 2003)= 1

=>  x + 2003 = 1 hoặc x + 2003 = -1

=>  x = -2002      hoặc x = -2004

Thay vào biểu thức P ta thấy nếu x = -2002 thì biểu thức sẽ có giá trị lớn hơn.

Vậy maxA = -2002 khi và chỉ khi x= -2002.

Em không biết có đúng không vì em mới học lớp 8, nhưng chắc chắn cũng phải 70 - 80% là đúng.

Hoàng Thị Huyền Trang
1 tháng 4 2016 lúc 22:05

cảm ơn kẻ hủy diệt những e lm sai rồi.

Lê Phương Linh
Xem chi tiết
Trần Ngọc Bảo
Xem chi tiết
Isolde Moria
13 tháng 8 2016 lúc 7:52

Ta có

\(x^2\ge0\) với mọi x

\(\Rightarrow x^2+1\ge1\)

\(\Rightarrow\sqrt{x^2+1}\ge1\)

\(\Rightarrow\frac{1}{\sqrt{x^2+1}}\le1\)

\(\Rightarrow\frac{9}{\sqrt{x^2+1}}\le9\)

\(\Rightarrow1+\frac{9}{\sqrt{x^2+1}}\le10\)

Dấu " = " xảy ra khi x=0

Vậy MAXP=10 khi x=0

 

 

Lightning Farron
13 tháng 8 2016 lúc 7:55

Để P đạt GTLN

\(\Rightarrow\sqrt{x^2+1}\) đạt GTNN

Ta thấy:\(x^2\ge0\)

\(\Rightarrow x^2+1\ge0+1=1\)

\(\Rightarrow\sqrt{x^2+1}\ge\sqrt{1}=1\)

Khi đó GTLN của P là \(1+\frac{9}{1}=1+9=10\) khi x=0

Vậy MaxP=10 khi x=0

Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 9:58

Nhận xét : P > 0

Để P đạt giá trị lớn nhất thì \(\frac{9}{\sqrt{x^2+1}}\) đạt giá trị lớn nhất \(\Leftrightarrow\sqrt{x^2+1}\) đạt giá trị nhỏ nhất

Ta có : \(x^2+1\ge1\Leftrightarrow\sqrt{x^2+1}\ge1\)

=> Min \(\left(\sqrt{x^2+1}\right)=1\Leftrightarrow x=0\)

Vậy Max P \(=1+\frac{9}{1}=10\) <=> x = 0 

 

le thi ngoc anh
Xem chi tiết
Nguyễn Thị Hồng Nhung
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 8 2020 lúc 21:26

Bài 1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

a) Ta có: \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

Để A>1 thì A-1>0

\(\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}-1>0\)

\(\Leftrightarrow\frac{\sqrt{x}-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\frac{\sqrt{x}-\sqrt{x}+2}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\frac{2}{\sqrt{x}-2}>0\)

mà 2>0

nên \(\sqrt{x}-2>0\)

\(\Leftrightarrow\sqrt{x}>2\)

hay x>4(nhận)

Vậy: Khi x>4 thì A>1

Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 5 2022 lúc 7:59

a: \(Q=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}-3=\sqrt{x}-3\)

b: Để \(Q=2\) thì \(\sqrt{x}=5\)

hay x=25

Tung Nguyễn
Xem chi tiết
Khanh Lê
20 tháng 7 2016 lúc 22:43

a)\(ĐKXĐ\Leftrightarrow\begin{cases}\sqrt{x}\ge0\\\sqrt{x}-1\ne0\end{cases}\Leftrightarrow\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(A=\frac{\sqrt{x}\cdot\left(\sqrt{x}+2\right)+1\cdot\left(\sqrt{x}-1\right)-3\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

b)\(S=A\cdot B\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+3}{\sqrt{x}+1}\)

\(=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2+1}{\sqrt{x}+2}\)

\(=1+\frac{1}{\sqrt{x}+2}\)

Để S đạt GTLN thì \(\frac{1}{\sqrt{x}+2}\)  đạt GTLN 

\(\frac{1}{\sqrt{x}+2}\) đạt GTLN \(\Leftrightarrow\sqrt{x}+2\) đạt GTNN 

GTNN \(\sqrt{x}+2\) là 2 \(\Leftrightarrow x=0\)

Vậy GTLN của S là \(\frac{3}{2}\Leftrightarrow x=0\)

Khanh Lê
20 tháng 7 2016 lúc 22:46

ĐKXĐ \(\Leftrightarrow\)\(\sqrt{x}\ge0\) và \(\sqrt{x}-1\ne0\)

\(\Leftrightarrow x\ge0\) và \(x\ne1\)

Tung Nguyễn
23 tháng 7 2016 lúc 23:27

SAO KHÔNG XEM ĐƯỢC VẬY TOÀN LEFT RIGHT FRAC CÁI GÌ CHẢ HIỂU NỔI 

 

lê thanh tùng
Xem chi tiết
Ngọc Vĩ
20 tháng 7 2016 lúc 21:54

a/ \(A=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)   \(\left(ĐK:x\ge0;x\ne1\right)\)

   \(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

      \(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

     \(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)