tim gia tri lớn nhất của biểu thức:
\(\frac{2\sqrt{x}}{1+x}\)
tim gia tri lớn nhất của biểu thức:
P= \(\frac{x}{\left(x+2003\right)^2}\) voi x>0
P đạt giá trị lớn nhất khi và chỉ khi (x + 2003)2 nhỏ nhất
mà (x + 2003)2 \(\ge\) 0
=> GTNN của (x + 2003)2 là 1 (vì nếu bằng 0 thì giá trị của biểu thức không XĐ)
(x + 2003)2 = 1
=> x + 2003 = 1 hoặc x + 2003 = -1
=> x = -2002 hoặc x = -2004
Thay vào biểu thức P ta thấy nếu x = -2002 thì biểu thức sẽ có giá trị lớn hơn.
Vậy maxA = -2002 khi và chỉ khi x= -2002.
Em không biết có đúng không vì em mới học lớp 8, nhưng chắc chắn cũng phải 70 - 80% là đúng.
cảm ơn kẻ hủy diệt những e lm sai rồi.
Cho bthuc: \(A=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{x}+2}+\frac{\sqrt{x}}{1-x}\)
a) Rut gon A
b) Tim gia tri cua x de /A/ =\(\frac{1}{2}\)
c) Tim x nguyen de A co gia tri nguyen
Gia trị lớn nhất của biểu thức P= 1+$\frac{9}{\sqrt{x^2+1}}$ là...
Ta có
\(x^2\ge0\) với mọi x
\(\Rightarrow x^2+1\ge1\)
\(\Rightarrow\sqrt{x^2+1}\ge1\)
\(\Rightarrow\frac{1}{\sqrt{x^2+1}}\le1\)
\(\Rightarrow\frac{9}{\sqrt{x^2+1}}\le9\)
\(\Rightarrow1+\frac{9}{\sqrt{x^2+1}}\le10\)
Dấu " = " xảy ra khi x=0
Vậy MAXP=10 khi x=0
Để P đạt GTLN
\(\Rightarrow\sqrt{x^2+1}\) đạt GTNN
Ta thấy:\(x^2\ge0\)
\(\Rightarrow x^2+1\ge0+1=1\)
\(\Rightarrow\sqrt{x^2+1}\ge\sqrt{1}=1\)
Khi đó GTLN của P là \(1+\frac{9}{1}=1+9=10\) khi x=0
Vậy MaxP=10 khi x=0
Nhận xét : P > 0
Để P đạt giá trị lớn nhất thì \(\frac{9}{\sqrt{x^2+1}}\) đạt giá trị lớn nhất \(\Leftrightarrow\sqrt{x^2+1}\) đạt giá trị nhỏ nhất
Ta có : \(x^2+1\ge1\Leftrightarrow\sqrt{x^2+1}\ge1\)
=> Min \(\left(\sqrt{x^2+1}\right)=1\Leftrightarrow x=0\)
Vậy Max P \(=1+\frac{9}{1}=10\) <=> x = 0
cho biểu thức \(p=\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a) rút gọn p
b) tim gia tri cua a de p<1
tim gia tri cua p neu a = \(19-8\sqrt{3}\)
tim gia tri nhỏ nhất và lớn nhất của : (x-1)/x2
1) Cho bieu thuc \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
a) Tim tat ca cac gia tri cua x de A>1
Bài 1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
a) Ta có: \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
Để A>1 thì A-1>0
\(\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}-1>0\)
\(\Leftrightarrow\frac{\sqrt{x}-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\frac{\sqrt{x}-\sqrt{x}+2}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\frac{2}{\sqrt{x}-2}>0\)
mà 2>0
nên \(\sqrt{x}-2>0\)
\(\Leftrightarrow\sqrt{x}>2\)
hay x>4(nhận)
Vậy: Khi x>4 thì A>1
cho biểu thức Q = \(\dfrac{x+2\sqrt{x}}{\sqrt{x}+2}\)-3(x ≥ 0)
a,rút gọn biểu thức Q
b,tìm gia tri của x để Q =2
a: \(Q=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}-3=\sqrt{x}-3\)
b: Để \(Q=2\) thì \(\sqrt{x}=5\)
hay x=25
cho 2 biểu thức
A=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)
B=\(\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
a)Rút gọn biểu thức A
b)Tìm giá trị của x để biểu thức S=A.B có giá trị lớn nhất
a)\(ĐKXĐ\Leftrightarrow\begin{cases}\sqrt{x}\ge0\\\sqrt{x}-1\ne0\end{cases}\Leftrightarrow\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(A=\frac{\sqrt{x}\cdot\left(\sqrt{x}+2\right)+1\cdot\left(\sqrt{x}-1\right)-3\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
b)\(S=A\cdot B\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2+1}{\sqrt{x}+2}\)
\(=1+\frac{1}{\sqrt{x}+2}\)
Để S đạt GTLN thì \(\frac{1}{\sqrt{x}+2}\) đạt GTLN
\(\frac{1}{\sqrt{x}+2}\) đạt GTLN \(\Leftrightarrow\sqrt{x}+2\) đạt GTNN
GTNN \(\sqrt{x}+2\) là 2 \(\Leftrightarrow x=0\)
Vậy GTLN của S là \(\frac{3}{2}\Leftrightarrow x=0\)
ĐKXĐ \(\Leftrightarrow\)\(\sqrt{x}\ge0\) và \(\sqrt{x}-1\ne0\)
\(\Leftrightarrow x\ge0\) và \(x\ne1\)
SAO KHÔNG XEM ĐƯỢC VẬY TOÀN LEFT RIGHT FRAC CÁI GÌ CHẢ HIỂU NỔI
cho 2 biểu thức
A=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)
B=\(\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
a)Rút gọn biểu thức A
b)Tìm giá trị của x để biểu thức S=A.B có giá trị lớn nhất
a/ \(A=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\) \(\left(ĐK:x\ge0;x\ne1\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)