Những câu hỏi liên quan
asssssssaasawdd
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 6 2020 lúc 23:05

Điều kiện là a;b;c dương:

Trước hết ta chứng minh: \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)

Thật vậy, BĐT tương đương:

\(\left(bx^2+ay^2\right)\left(a+b\right)\ge ab\left(x^2+2xy+y^2\right)\)

\(\Leftrightarrow abx^2+aby^2+b^2x^2+a^2y^2\ge abx^2+aby^2+2abxy\)

\(\Leftrightarrow b^2x^2+a^2y^2-2abxy\ge0\)

\(\Leftrightarrow\left(bx-ay\right)^2\ge0\) (luôn đúng)

Do đó:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Đen đủi mất cái nik
Xem chi tiết
Nguyễn Tiến Đức
10 tháng 9 2018 lúc 19:41

tự ra câu hởi tự trả lời à bạn

Đen đủi mất cái nik
10 tháng 9 2018 lúc 19:44

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á

bach nhac lam
Xem chi tiết
Trần Thùy Linh
25 tháng 4 2020 lúc 13:04

\(A=\frac{a}{ab+c\left(a+b+c\right)}+\frac{b}{bc+a\left(a+b+c\right)}+\frac{c}{ca+b\left(a+b+c\right)}\)

\(=\frac{a}{\left(b+c\right)\left(a+c\right)}+\frac{b}{\left(a+b\right)\left(a+c\right)}+\frac{c}{\left(a+b\right)\left(c+b\right)}\)

Áp dụng bđt AM-GM ta có

\(A=\frac{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\ge27.\frac{a^2+b^2+c^2+ab+bc+ca}{8\left(a+b+c\right)^3}\)\(=\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)

\(=\frac{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}{8}\)\(\ge\frac{9-\frac{\left(a+b+c\right)^2}{3}}{8}=\frac{9-3}{8}=\frac{3}{4}\)

Dấu "=" xảy ra khi a=b=c=1

tthnew
25 tháng 4 2020 lúc 16:02

b) Mạnh hơn, và dễ dàng hơn là:

\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{\sum c\left(a-b\right)^2}{abc}\)

Nó tương đương với: \({\frac {{a}^{2}}{{b}^{2}}}+{\frac {{b}^{2}}{{c}^{2}}}+{\frac {{c}^{2} }{{a}^{2}}}+3-2\,{\frac {a}{b}}-2\,{\frac {b}{c}}-2\,{\frac {c}{a}} \geqq 0\)

Là hiển nhiên vì \(\frac{a^2}{b^2}+1\ge\frac{2a}{b}\)

Đơn giản:))

tthnew
25 tháng 4 2020 lúc 16:46

a) Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow ab+bc+ca=1;0< a,b,c< 1\)

Cần chứng minh: \(P=\sum\frac{\frac{1}{a}-1}{\frac{1}{b^2}}=\sum\frac{b^2-ab^2}{a}\ge\sqrt{3}-1\)

Hay là: \(\left(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\right)\sqrt{ab+bc+ca}\ge\left(\sqrt{3}-1\right)\left(ab+bc+ca\right)+a^2+b^2+c^2\)

\(\Leftrightarrow\left(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\right)^2\left(ab+bc+ca\right)\ge\) \(\Big[ (\sqrt{3} -1) (ab+bc+ca) +a^2+b^2+c^2\Big]^2\)

Giả sử \(c=\min\{a,b,c\}\) và đặt \(a=c+u, \, b=c+v \, (u,\, v \geq 0)\)

Nếu mình không nhìn nhầm, sau khi rút gọn, nhóm lại theo biến c, bạn nhận được một cái gì đó gọi là hiển nhiên haha

Chúc may mắn, mình mới rút gọn thử thì thấy có vẻ hiển nhiên thật :))

Tuấn Anh Nguyễn
Xem chi tiết
zZz Cool Kid_new zZz
Xem chi tiết
Incursion_03
13 tháng 1 2019 lúc 15:06

Ta có bđt : \(\frac{m^2}{n}+\frac{p^2}{q}\ge\frac{\left(m+p\right)^2}{n+q}\)\(\left(m,n,p,q>0\right)\)(1)

Thật vậy \(\left(1\right)\Leftrightarrow\frac{m^2q+p^2n}{nq}\ge\frac{\left(m+p\right)^2}{n+q}\)

                       \(\Leftrightarrow m^2n\left(n+q\right)+p^2n\left(n+q\right)\ge nq\left(m+p\right)^2\)

                      \(\Leftrightarrow............\)(Phá tung ra + chuyển vế)

                      \(\Leftrightarrow\left(mq-pn\right)^2\ge0\)(Luôn đúng)

Áp dụng (1) ta được

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)(ĐPCM)

Dấu "=" khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

P/S: nếu hỏi tại sao chỗ bđt phụ lại đặt m,n,p,q khó nhìn thì hãy bảo tại cái đề bài đã có a,b,x,y rồi -.-

tth_new
14 tháng 1 2019 lúc 9:58

Áp dụng BĐT Bunhiacopxki:

\(\left[\left(\frac{x}{\sqrt{a}}\right)^2+\left(\frac{y}{\sqrt{b}}\right)^2+\left(\frac{z}{\sqrt{c}}\right)^2\right]\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right]\)\(\ge\left(x+y+z\right)^2\)

Hay \(\left(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\right)\left(a+b+c\right)\ge\left(x+y+z\right)^2\)

Chia hai vế của BĐT cho (a + b + c),ta có đpcm: \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

Harry James Potter
Xem chi tiết
Kiệt Nguyễn
8 tháng 11 2019 lúc 21:08

Áp dụng BĐT Cauchy - Schwarz:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

(Dấu "="\(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\))

Khách vãng lai đã xóa
HD Film
8 tháng 11 2019 lúc 21:30

\(\)\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

\(\Leftrightarrow a^2y\left(x+y\right)+b^2x\left(x+y\right)\ge\left(a+b\right)^2xy\)

\(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy-\left(a+b\right)^2xy\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)

Vậy BDT luôn đúng

Áp dụng tương tự với \(\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\)là có thể CM dc

BDT thức này gọi là Cauchy-Schwarz bạn nhé!

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
9 tháng 11 2019 lúc 21:19

Với x,y,z dương nha !

Theo BĐT Bunhiacopski cho 2 bộ số \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right);\left(\frac{a}{\sqrt{x}};\frac{b}{\sqrt{y}};\frac{c}{\sqrt{z}}\right)\)

\(\Rightarrow\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\ge\left(a+b+c\right)^2\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(đpcm\right)\)

Khách vãng lai đã xóa
Tú Nguyễn
Xem chi tiết
tthnew
13 tháng 2 2020 lúc 18:16

Mấy cái dấu "=" anh tự xét.

Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)

a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)

b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)

Khách vãng lai đã xóa
Đỗ Phạm Ngọc Phước
Xem chi tiết
Thắng Nguyễn
1 tháng 3 2017 lúc 19:52

đây là BĐT Cauchy-Schwar dạng Engel cho 3 số, cách c/m tổng quát ở đây 12 cách chứng minh bất đẳng thức Bunyakovsky Cauchy Schwarz – Math2IT

Giao Khánh Linh
Xem chi tiết
Lê Tài Bảo Châu
11 tháng 11 2019 lúc 22:37

Áp dụng bất đẳn thức Cauchy-Schwarz ta có: 

\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)=\)\(\left[\frac{a^2}{\left(\sqrt{x}\right)^2}+\frac{b^2}{\left(\sqrt{y}\right)^2}+\frac{c^2}{\left(\sqrt{z}\right)^2}\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)

          \(\ge\left(\frac{a}{\sqrt{x}}.\sqrt{x}+\frac{b}{\sqrt{y}}.\sqrt{y}+\frac{c}{\sqrt{z}}.\sqrt{z}\right)=\left(a+b+c\right)\)\(\left(đpcm\right)\)

Khách vãng lai đã xóa
Lê Tài Bảo Châu
11 tháng 11 2019 lúc 22:37

ấy chết em quên ko có mũ 2 

Khách vãng lai đã xóa
Lê Tài Bảo Châu
11 tháng 11 2019 lúc 22:41

Áp dụng bất đẳng thức Cauchy-Schwarz ta có: 

\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)\)\(=\left[\frac{a^2}{\left(\sqrt{x}\right)^2}+\frac{b^2}{\left(\sqrt{y}\right)^2}+\frac{c^2}{\left(\sqrt{z}\right)^2}\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)

\(\ge\left(\frac{a}{\sqrt{x}}.\sqrt{x}+\frac{b}{\sqrt{y}}.\sqrt{y}+\frac{c}{\sqrt{z}}.\sqrt{z}\right)^2=\left(a+b+c\right)^2\left(đpcm\right)\)

Khách vãng lai đã xóa