Cho hai số x, y thỏa mãn x +y = 2. Chứng minh
\(x^2y^2\left(x^2+y^2\right)\le2\)
Cho x và y là các số dương thỏa mãn x+y=2
Chứng minh rằng \(x^2.y^2.\left(x^2+y^2\right)\le2\)
Cho x, y \(\in R\) thỏa mãn:
\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)
Chứng minh rằng: \(x^3+y^3+3xy=1\)
Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(x-\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)
\(\Leftrightarrow-2\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)
\(\Leftrightarrow x-\sqrt{x^2+2}+y-1+\sqrt{y^2-2y+3}=0\) (*)
\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)\left(y-1-\sqrt{y^2-2y+3}\right)=2\left(y-1-\sqrt{y^2-2y+3}\right)\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right).-2=2\left(y-1-\sqrt{y^2+2y+3}\right)\)
\(\Leftrightarrow y-1-\sqrt{y^2+2y+3}+x+\sqrt{x^2+2}=0\) (2*)
Cộng vế với vế của (*) và (2*) => \(2x+2y-2=0\)
\(\Leftrightarrow x+y=1\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Leftrightarrow x^3+y^3+3xy=1\)
Ta có:`(x+sqrt{x^2+2})(sqrt{x^2+2}-x)=2`
`<=>sqrt{x^2+2}-x=y-1+sqrt{y^2-2y+3}`
`<=>sqrt{x^2+2}-sqrt{y^2-2y+3}=x+y-1(1)`
CMTT:`sqrt{y^2-2y+3}-(y-1)=x+sqrt{x^2+2}`
`<=>sqrt{y^2-2y+3}-y+1=x+sqrt{x^2+2}`
`<=>sqrt{y^2-2y+3}-sqrt{x^2+2}=x+y-1(2)`
Cộng từng vế (1)(2) ta có:
`2(x+y-1)=0`
`<=>x+y-1=0`
`<=>x+y=1`
`<=>(x+y)^3=1`
`<=>x^3+y^3+3xy(x+y)=1`
`<=>x^3+y^3+3xy=1`(do `x+y=1`)
Cho \(x>0\)và \(y>0\)thỏa mãn \(x+y=2\).Chứng minh rằng: \(x^2y^2\left(x^2+y^2\right)\le2\)
Mình cần gấp nhé, cảm ơn các bạn nhiều.
mình cũng muốn lắm nhưng mình mới lớp 7
Cho x,y thỏa mãn: x+y=2. CM: \(xy.\left(x^2+y^2\right)\le2\)
Đặt xy = a.
Ta có \(xy.\left(x^2+y^2\right)=xy.\left[\left(x+y\right)^2-2xy\right]=t\left(4-2t\right)=4t-2t^2=2-2\left(t-1\right)^2\le2\).
Đẳng thức xảy ra khi x = y = 1.
cho 2 số tự nhiên y>x thỏa mãn: \(\left(2y-1\right)^2=\left(2y-x\right)\left(6y+x\right)\).Chứng minh rằng 2y-x là số chính phương
Cho x,y,z là các số thực thỏa mãn x+y+z = 0
Chứng minh \(P=\frac{x\left(x+2\right)}{2x^2+1}+\frac{y\left(y+2\right)}{2y^2+1}+\frac{z\left(z+2\right)}{2z^2+1}\ge0\)
Chứng minh rằng với x,y là hai số thực không âm thỏa mãn \(x+y\ge1\)ta luôn có :
\(\sqrt{x^2+x+4}+\sqrt{y^2+y+4}\le2+\sqrt{\left(x+y\right)^2+x+y+4}\)
Ai biết làm không giúp với.
Cho x,y là số thực thỏa mãn \(x^2+y^2+xy-3x-3y+3=0\). Chứng minh biểu thức P = \(\left(3x+2y-6\right)^{1010}+\left(x-y+1^{1011}\right)+2021\) có giá trị là một số nguyên
1. Cho x,y là các số thực dương thỏa mãn \(x+y=2.Cm\) \(x^2y^2\left(x^2+y^2\right)\le2\)
2. Cho x,y là các số dương thỏa mãn \(x+y=2.Cm\) \(x^3y^3\left(x^3+y^3\right)\le2\)
1.
Ta có:
\(xy\left(x^2+y^2\right)=\dfrac{1}{2}\cdot2xy\left(x^2+y^2\right)\le\dfrac{1}{2}\cdot\dfrac{\left(x^2+2xy+y^2\right)^2}{4}=\dfrac{1}{2}\cdot\dfrac{\left(x+y\right)^4}{4}=\dfrac{1}{2}\cdot\dfrac{2^4}{4}=2\)
\(xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2^2}{4}=1\)
\(\Rightarrow VT\le2\cdot1=2\)
Dấu "=" xảy ra khi x = y = 1