Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Egoo
Xem chi tiết
Lê Thị Thục Hiền
27 tháng 5 2021 lúc 20:44

Đáp án của toi:https://hoc24.vn/cau-hoi/tim-tat-ca-cac-gia-tri-cua-tham-so-m-de-bat-phuong-trinh-sau-co-nosqrt2xsqrt4-x-sqrt82x-x2le-m.920223129881

Đáp án của một bạn khác: https://hoc24.vn/cau-hoi/tim-tat-ca-cac-gia-tri-cua-tham-so-m-de-bat-phuong-trinh-sau-co-nosqrt2xsqrt4-x-sqrt82x-x2le-m.616555176629

Egoo
Xem chi tiết
Hồng Phúc
11 tháng 4 2021 lúc 14:53

ĐK: \(-2\le x\le4\)

Đặt \(\sqrt{2+x}+\sqrt{4-x}=t\left(\sqrt{6}\le t\le2\sqrt{3}\right)\)

\(\Rightarrow\sqrt{8+2x-x^2}=\dfrac{t^2-6}{2}\)

Bất phương trình tương đương:

\(t+\dfrac{t^2-6}{2}\le m\)

\(\Leftrightarrow f\left(t\right)=t^2+2t-6\le2m\)

Bất phương trình đã cho có nghiệm khi \(2m\ge minf\left(t\right)=f\left(\sqrt{6}\right)=2\sqrt{6}\)

\(\Leftrightarrow m\ge\sqrt{6}\)

Kết luận: \(m\ge\sqrt{6}\)

Egoo
Xem chi tiết
Lê Thị Thục Hiền
20 tháng 5 2021 lúc 22:37

Đặt \(t=\sqrt{2+x}+\sqrt{4-x}\)  (\(t\in\left[\sqrt{6};2\sqrt{3}\right]\) )      

\(\Leftrightarrow t^2=6+2\sqrt{8+2x-x^2}\)

\(\Leftrightarrow\dfrac{t^2-6}{2}=\sqrt{8+2x-x^2}\)

Khi đó ta cần tìm m để bpt \(t-\dfrac{t^2-6}{2}\le m\) có nghiệm \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)

\(\Leftrightarrow-t^2+2t+6-2m\le0\) có nghiệm  \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)

Đặt \(f\left(t\right)=-t^2+2t+6-2m\) , \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)

BBT 

t-∞√62√31-∞f(t)f(1)2√6-2m-6+4√3-2m

TH1: \(maxf\left(t\right)\le0\) \(\Leftrightarrow f\left(1\right)\le0\) \(\Leftrightarrow7-2m\le0\) \(\Leftrightarrow m\ge\dfrac{7}{2}\)       (I)

TH2: \(maxf\left(t\right)>0\Leftrightarrow7-2m>0\Leftrightarrow m< \dfrac{7}{2}\)

Để \(f\left(t\right)\le0\) có nghiệm \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)

 \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{6}-2m\le0\\2\sqrt{6}-2m>0\ge-6+4\sqrt{3}-2m\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{6}\\\sqrt{6}>m\ge-3+2\sqrt{3}\end{matrix}\right.\)

Kết hợp với đk ta có:\(\left[{}\begin{matrix}\dfrac{7}{2}>m\ge\sqrt{6}\\\sqrt{6}>m\ge-3+2\sqrt{3}\end{matrix}\right.\)           (II)

Từ (I) (II) ta có: \(m\in\left[-3+2\sqrt{3};+\infty\right]\)

 

Ngô Thành Chung
Xem chi tiết
Hồng Phúc
20 tháng 12 2020 lúc 22:41

ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\left(2\le t\le2\sqrt{2}\right)\)

Phương trình đã cho trở thành:

\(t+t^2-4+2m+3=0\)

\(\Leftrightarrow2m=f\left(t\right)=-t^2-t+1\)

Phương trình đã cho có nghiệm khi \(minf\left(t\right)\le2m\le maxf\left(t\right)\)

\(\Leftrightarrow-7-2\sqrt{2}\le2m\le-5\)

\(\Leftrightarrow\dfrac{-7-2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)

Ann Hana
Xem chi tiết
Hồng Phúc
14 tháng 4 2021 lúc 18:57

\(\sqrt{2x^2-8x+m}=x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-8x+m=\left(x-1\right)^2\\x-1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+m-1=0\\x\ge1\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(x^2-6x+m-1=0\left(1\right)\) có nghiệm duy nhất thỏa mãn \(x\ge1\)

\(\left(1\right)\Leftrightarrow m=f\left(x\right)=-x^2+6x+1\)

Đồ thi hàm số \(y=f\left(x\right)=-x^2+6x+1\):

Dựa vào đồ thị ta được \(m=10\)

P/s: Cái này t lười vẽ bảng biến thiên nên vẽ đồ thị đó, chứ bình thường viết trong vở thì dùng bảng biến thiên nhanh hơn nhiều.

Nguyễn Thị Cẩm Nhi
Xem chi tiết
Nguyễn Thị Cẩm Nhi
Xem chi tiết
Xyz OLM
4 tháng 11 2018 lúc 6:49

\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt[4]{x\left(1-x\right)}=m^3\)

Nguyễn Thị Cẩm Nhi
4 tháng 11 2018 lúc 6:50

gì vậy ạ

viết lại đề à????????

Khách vãng lai đã xóa
Way To Heaven
Xem chi tiết
hạ băng
Xem chi tiết