Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyện thị bích thủy
Xem chi tiết
HT.Phong (9A5)
6 tháng 10 2023 lúc 12:10

Ta có công thức tổng quát như sau:

\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)

Áp dụng ta có:

\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\) 

\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)

______

\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)

\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)

_____

\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)

\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)

xu
Xem chi tiết
lethua
27 tháng 9 2021 lúc 23:38

a) \(13\times17-256:16+14:7-1\)

\(=221-16+2-1\)

\(=206\)

Khách vãng lai đã xóa
nguyễn trung hiếu
Xem chi tiết
Minh Anh
Xem chi tiết
dream XD
19 tháng 7 2021 lúc 8:00

\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\) 

\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\) 

\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\) 

\(S=7.\left(2+2^4+...+2^{28}\right)\) 

⇒ \(S⋮7\)   ( điều phải chứng minh ) 

OH-YEAH^^
19 tháng 7 2021 lúc 8:02

S=21+22+23+...+230

S=(21+22+23)+(24+25+26)+...+(228+229+230)

S=7.2+7.24+...+7.228

S=7.(2+24+...+228)

⇒S⋮7

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 14:20

Ta có: \(S=2^1+2^2+2^3+...+2^{28}+2^{29}+2^{30}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{28}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+2^4+...+2^{28}\right)⋮7\)

nguyenlengan
Xem chi tiết
Lê Hoài Duyên
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Nguyễn Hải Nam
10 tháng 12 2017 lúc 21:36

Thanks bạn

Đặng Thị Khánh Ly
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Khách vãng lai đã xóa
S.T Phạm Hoàng
Xem chi tiết
I am➻Minh
5 tháng 4 2018 lúc 20:50

Ta có 1/22<1/1.2

         1/32<1/2.3

         1/42<1/3.4

         ................

        1/8²<1/7.8

=>B<1/1.2+1/2.3+1/3.4+...+1/7.8

=>B<1-1/2+1/2-1/3+1/3-1/4+...+1/7-1/8

=>B<1-1/8

Vậy B < 1

Toni_Nghĩa Nhật
18 tháng 3 lúc 8:13

ad a zwe zxdb WE4RBTa

nguyễn gia bảo
21 tháng 6 lúc 21:17

Ta có 1/22<1/1.2

         1/32<1/2.3

         1/42<1/3.4

         ................

        1/8²<1/7.8

=>B<1/1.2+1/2.3+1/3.4+...+1/7.8

=>B<1-1/2+1/2-1/3+1/3-1/4+...+1/7-1/8

=>B<1-1/8

Vậy B < 1 ai đồng tình với mình ko

 

Đào Trần Tuấn Anh
Xem chi tiết
Lê Minh Hiền
Xem chi tiết
Đoàn Đức Hà
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Khách vãng lai đã xóa
Linh Linh Channel
Xem chi tiết
Đoàn Đức Hà
21 tháng 5 2021 lúc 20:47

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10-9}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}< 1\)

Khách vãng lai đã xóa
Hà Nhật Minh
21 tháng 5 2021 lúc 21:15

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\\ A< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\\ A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\\ A< \frac{9}{10}< 1\Rightarrow A< 1\)

Khách vãng lai đã xóa