\(\frac{1.11+0.19-1.3\cdot2}{0.296+0.094}-X=\frac{\left(\frac{1}{2}+\frac{1}{3}\right)}{2}\)
Cần gấp ạ!!
Cho:
\(A=\frac{1.11+0.19-1.3\cdot2}{2.06+0.54}-\left(\frac{1}{2}+\frac{1}{3}\right)\div2\)2
\(B=\left(5\frac{7}{8}-2\frac{1}{4}-0.5\right)\div2\frac{23}{26}\)
a. Rút gọn A và B b. Tìm \(x\in Z\)để A<x<B
Tìm x :
a) \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{103.105}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
b) \(\left(\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{10.110}\right)x=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
$\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{103.105}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{103}-\frac{1}{105}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{1}{2}.\left(1-\frac{1}{105}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{52}{105}.\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{52}{105}x-\frac{52}{105}=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow x=-\frac{3}{11}$
b) Đặt \(A=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{10.110}\)
A\(=\frac{1}{100}\left(\frac{100}{1.101}+\frac{100}{2.102}+\frac{1}{3.103}+...+\frac{100}{10.110}\right)\)
A\(=\frac{1}{100}\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)\)
A\(=\frac{1}{100}\left[\left(1+\frac{1}{2}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right]\)Đặt \(B=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{10}{100.110}\)
\(B=\frac{1}{10}\left(\frac{10}{1.11}+\frac{10}{2.12}+...+\frac{10}{100.110}\right)\)
\(B=\frac{1}{10}\left(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)
\(B=\frac{1}{10}\left[\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}\right)\right]\)\(=\frac{1}{10}\left[\left(1+\frac{1}{2}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right]\)\(B=10A\)
\(A.x=10A\)
\(=>x=10\)
tìm x biết
1)\(-\frac{2}{3}\cdot\left(x-\frac{1}{4}\right)=\frac{1}{3}\cdot\left(2x-1\right)\)
2)\(\frac{1}{5}\cdot2^x+\frac{1}{5}\cdot2^{x+1}=\frac{1}{5}\cdot2^7+\frac{1}{3}\cdot2^8\)
Giải các phương trình sau
a) \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
b) \(\left(\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{10.110}\right)x=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
a) \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{7}{15}\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{7}{15}x-\frac{7}{15}=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{7}{15}x-\frac{7}{15}-\frac{3}{5}x+\frac{7}{15}=0\)
\(\Leftrightarrow\frac{8}{15}x=0\)
\(\Leftrightarrow x=0\)
tìm x
1, \(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
2, \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
3, \(x-\left(\frac{11}{12}-x\right)=x-\frac{3}{4}\)
4, \(-29-4\cdot|3x+6|=-41\)
5, \(\frac{1}{5}\cdot2x+\frac{1}{3}\cdot2^{x+1}=\frac{1}{5}\cdot2^7+\frac{1}{3}\cdot2^8\)
MỌI NGƯỜI LÀM ĐƯỢC CÂU NÀO THÌ LÀM GIÚP EM Ạ
\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x=0+\frac{2}{5}\)
\(\Leftrightarrow x\left(\frac{1}{3}+\frac{2}{5}\right)=\frac{2}{5}\)
\(\Leftrightarrow x\left(\frac{5}{15}+\frac{6}{15}\right)=\frac{2}{5}\)
\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)
\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}\)
\(\Leftrightarrow x=\frac{6}{11}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{49}{50}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\div2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\times\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{50}{100}-\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Leftrightarrow x+1=100\)
\(\Leftrightarrow x=100-1\)
\(\Leftrightarrow x=99\)
\(x-\left(\frac{11}{12}+x\right)=x-\frac{3}{4}\)
\(\Leftrightarrow x-\frac{11}{12}-x=x-\frac{3}{4}\)
\(\Leftrightarrow-\frac{11}{12}=x-\frac{3}{4}\)
\(\Leftrightarrow x=\frac{-11}{12}+\frac{3}{4}\)
\(\Leftrightarrow x=\frac{-11}{12}+\frac{9}{12}\)
\(\Leftrightarrow x=\frac{-2}{12}=\frac{-1}{6}\)
giúp mình với ạ , mình đang cần gấp !!!
a,\(\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\4\left(x+1\right)-\left(x+2y\right)=9\end{cases}}\)
b, \(\hept{\begin{cases}x+\frac{1}{y}=\frac{-1}{2}\\2x-\frac{3}{y}=\frac{-7}{2}\end{cases}}\)
c,\(\hept{\begin{cases}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}\)
c) Ta có: \(\left\{{}\begin{matrix}\dfrac{x+2}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x+1}+\dfrac{10}{y-2}=25\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y-2}=22\\\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-2=\dfrac{1}{2}\\\dfrac{1}{x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=1\\y-2=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{5}{2}\end{matrix}\right.\)
Tìm x, biết:
a) \(\left(-3+\frac{3}{x}-\frac{1}{3}\right)\div\left(1+\frac{2}{5}+\frac{2}{3}\right)=-\frac{5}{4}\)
b) \(-\frac{3x}{4}.\left(\frac{1}{x}+\frac{2}{7}\right)=0\)
c) \(3-\frac{1-\frac{1}{2}}{1+\frac{1}{x}}=2\frac{2}{3}\)
Help me, cần gấp lắm. Nhanh lên ạ!
a) ĐKXĐ : \(x\ne0\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(1+\frac{2}{5}+\frac{2}{3}\right)=\frac{-5}{4}\)
\(\left(\frac{-9x}{3x}+\frac{9}{3x}-\frac{x}{3x}\right):\left(\frac{15}{15}+\frac{6}{15}+\frac{10}{15}\right)=\frac{-5}{4}\)
\(\frac{-9x+9-x}{3x}:\frac{15+6+10}{15}=\frac{-5}{4}\)
\(\frac{-10x+9}{3x}:\frac{31}{15}=\frac{-5}{4}\)
\(\frac{-10x+9}{3x}=\frac{-31}{12}\)
\(\Leftrightarrow12\left(-10x+9\right)=-31\cdot3x\)
\(\Leftrightarrow-120x+108=-93x\)
\(\Leftrightarrow-120x+93x=-108\)
\(\Leftrightarrow-27x=-108\)
\(\Leftrightarrow x=4\)
b) ĐKXĐ : \(x\ne0\)
\(\frac{-3x}{4}\cdot\left(\frac{1}{x}+\frac{2}{7}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{-3x}{4}=0\\\frac{1}{x}+\frac{2}{7}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\left(loai\right)\\\frac{-2}{-2x}=\frac{-2}{7}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\left(loai\right)\\x=\frac{-7}{2}\end{cases}}\)
Vậy.....
c) phân tích ra rồi làm thôi e :)) a bận rồi
Trần Thanh Phương làm đúng rồi đó !
k bạn ý đi !
Tìm \(x\)
a) \(\left|x+\frac{1}{2}\right|=\frac{1}{3}\)
b) \(\left|x-\frac{1}{2}\right|=\frac{1}{3}-\frac{1}{2}\)
c) \(\left|x+\frac{1}{3}\right|-4=-1\)
d) \(\left|x-\frac{1}{5}\right|+\frac{1}{3}=\frac{1}{4}-\left|\frac{-3}{2}\right|\)
e) \(\left|x-\frac{5}{2}\right|=\frac{4}{3}-\left(\frac{2}{3}-\frac{1}{2}\right)\)
giúp mik vs ạ mik đag cần rất gấp!
a) \(\left|x+\frac{1}{2}\right|=\frac{1}{3}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{3}\\x+\frac{1}{2}=-\frac{1}{3}\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{6}\\x=-\frac{5}{6}\end{cases}}\)
Vậy....
b) \(\left|x-\frac{1}{2}\right|=\frac{1}{3}-\frac{1}{2}\)
\(\Leftrightarrow\)\(\left|x-\frac{1}{2}\right|=-\frac{1}{6}\) vô lí do \(\left|a\right|\ge0\)
Vậy pt vô nghiệm
c) \(\left|x+\frac{1}{3}\right|-4=-1\)
\(\Leftrightarrow\)\(\left|x+\frac{1}{3}\right|=3\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+\frac{1}{3}=3\\x+\frac{1}{3}=-3\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{8}{3}\\x=-\frac{10}{3}\end{cases}}\)
Vậy..
d) \(\left|x-\frac{1}{5}\right|+\frac{1}{3}=\frac{1}{4}-\left|-\frac{3}{2}\right|\)
\(\Leftrightarrow\)\(\left|x-\frac{1}{5}\right|+\frac{1}{3}=-\frac{5}{4}\)
\(\Leftrightarrow\)\(\left|x-\frac{1}{5}\right|=-\frac{19}{12}\)vô lí do \(\left|a\right|\ge0\)với mọi a
Vậy pt vô nghiệm
e) \(\left|x-\frac{5}{2}\right|=\frac{4}{3}-\left(\frac{2}{3}-\frac{1}{2}\right)\)
\(\Leftrightarrow\)\(\left|x-\frac{5}{2}\right|=\frac{7}{6}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-\frac{5}{2}=\frac{7}{6}\\x-\frac{5}{2}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\frac{2}{3}\\x=\frac{4}{3}\end{cases}}\)
Vậy...
\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+\left|x+\frac{1}{5.7}\right|+...+\left|x+\frac{1}{99.101}\right|=51x\)
Mình đag cần rất gấp. Ai lm nhanh mình tick. Mong mọi người giúp mình với
ĐK : 51x \(\ge0\Rightarrow x\ge0\)
Với \(x\ge0\)thì \(x+\frac{1}{1.3}>0;x+\frac{1}{3.5}>0;...;x+\frac{1}{99.101}>0\)
Khi đó : \(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+\left|x+\frac{1}{5.7}\right|+...+\left|x+\frac{1}{99.101}\right|=51x\)
<=> \(x+\frac{1}{1.3}+x+\frac{1}{3.5}+x+\frac{1}{5.7}+....+x+\frac{1}{99.101}=51x\)(50 hạng tử x ở VT)
<=> \(50x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}=51x\)
<=> \(x=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\right)\)
<=> \(x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
<=> \(x=\frac{1}{2}\left(1-\frac{1}{101}\right)=\frac{50}{101}\)
Vậy x = 50/101