Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2023 lúc 20:35

loading...

 

Lê Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2023 lúc 20:22

Gọi giao của AB và CD là O

a: AB vuông góc CD

AC^2-BC^2

=AO^2+OC^2-CO^2-BO^2

=AO^2-BO^2

=AO^2+OD^2-OD^2-OB^2

=AD^2-BD^2

b: AC^2-BC^2=AD^2-BD^2

=>AC^2-AD^2=BC^2-BD^2

=>(vecto AC)^2-(vecto AD)^2=(vecto BC)^2-(vecto BD)^2

=>(vecto AC-vecto AD)(vecto AC+vecto AD)=(vecto BC-vecto BD)(vecto BC+vecto BD)

=>vecto DC*vecto AM*2=vecto DC*vecto BM*2(M là trung điểm của DC)

=>vecto DC*vecto AB=0

=>DC vuông góc AB

 

gtrutykyu
Xem chi tiết
Trần Hà Trang
14 tháng 11 2016 lúc 21:44

Bài 2:

Nối C với D ta được đoạn thẳng CD

Nối C với B, B với D, D với A, A với C, A với B ( Nói chung là gần giống vs hình của hoàng thị ngọc anh)

a)Xét tam giác ABC và tam giác ABD có:

AB chung

BC=AC (cùng cung tròn tâm A và B, bán kính AB)(gọi giải thích này là(1))

BD=AD (như trên)

-> 2 tam giác này bằng nhau(2)

b)Xét tam giác ACD và tam giác BCD có:

CD chung

AC=BC (1)

AD=BD (1)

-> 2 tam giác này bằng nhau

c) vì tam giác ABC bằng tam giác ABD (2)

-> góc CAB bằng góc BAD (2 góc tương ứng)

vậy AB là tpg của góc A

Hoàng Thị Ngọc Anh
14 tháng 11 2016 lúc 22:07

a) Vì AC thuộc đường tròn (A;AB)

AD thuộc đg tròn (A;AB)

=> AC = AD

Tượng tự: BC thuộc đg tròn (B;AB)

BD thuộc đg tròn (B;AB)

=> BC = BD

Xét tg ABC và tg ABD có:

AC = AD ( c/m trên)

AB cạnh chung( GT)

BC = BD ( c/m trên)

=> ΔABC = ΔABD ( c.c.c)→ ĐPCM

Ttự: AC ϵ (A; AB)

BC ϵ (B; AB). Do 2 đg tròn có bán kính bằng nhau

=> AC = BC

TT: AD = BD

Xét ΔACD và ΔBCD có:

AC = BC (c/m trên)

CD cạnh chung

AD = BD ( c/m trên)

=> ΔACD = ΔBCD(c.c.c)→ ĐPCM

 

 

 

Hoàng Thị Ngọc Anh
14 tháng 11 2016 lúc 21:19

A B C D

Đó là hình vẽ bài 2 thôi, để mk nghĩ đã nha!

le_meo
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 11 2017 lúc 11:20

Đỗ Duy Thiên
Xem chi tiết
qwewe
Xem chi tiết
Ngọc Diệu
Xem chi tiết