Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
FHhcy04
Xem chi tiết
Nguyễn Đăng Quyền
Xem chi tiết
Hue Tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 21:44

=1/2(2/1*3+2/3*5+...+2/2017*2019)

=1/2(1-1/3+1/3-1/5+...+1/2017-1/2019)

=1/2*2018/2019

=1009/2019

Thái Trần Nhã Hân
11 tháng 4 2023 lúc 22:09

=1/2(2/1x3+2/3x5+...+2/2017x2019)

=1/2(1-1/3+1/3-1/5+...+1/2017-1/2019)

=1/2x2018/2019

=1008/2019

Trần Thị Mai Phương
Xem chi tiết
Nguyễn Linh Chi
1 tháng 6 2020 lúc 22:39

\(2.S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)

\(=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2019-2017}{2017.2019}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)

\(=1-\frac{1}{2019}=\frac{2018}{2019}\)

=> \(S=\frac{1009}{2019}\)

Khách vãng lai đã xóa
ღղɕọℭ ɦ¡ếղ ღ
1 tháng 6 2020 lúc 22:56

Tính: S= 1/1.3 + 1/3.5 +1/5.7 + 1009/2019 .....+ 1/2017.2019

Trả lời:

1009/2019

Khách vãng lai đã xóa
Nguyễn An Vy
Xem chi tiết
Dương Lam Hàng
5 tháng 4 2018 lúc 14:03

Ta có: \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2005.2006}\)

\(\Rightarrow N=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2005}-\frac{1}{2006}\)

          \(=1-\frac{1}{2006}=\frac{2005}{2006}\)

 \(M=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2015.2017}\)

      \(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}\)

        \(=1-\frac{1}{2017}=\frac{2016}{2017}\)

Bùi Xuân Thảo Quỳnh
5 tháng 4 2018 lúc 14:07

N = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2005 - 1/2006

   = 1/1 - 1/2006

   = 2006/2006 - 1/2006

   =  2005/2006

Phạm Ánh Dương
Xem chi tiết
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
8 tháng 6 2020 lúc 15:54

Cố gắng lên (tự nhủ) 

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)

\(2S=1-\frac{1}{2019}=\frac{2018}{2019}\)

\(S=\frac{1009}{2019}\)

Khách vãng lai đã xóa
Hoàng Tuấn Hưng
19 tháng 4 2023 lúc 20:22

Hi

Skyler
Xem chi tiết
thanhthao
8 tháng 8 2021 lúc 20:22

A = 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/2017.2019

A = 1/2 (1 - 1/3 + 1/3 - 1/5 + 1/5 - ... - 1/2019)

A = 1/2 (1 - 1/2019)

A = 1/2 . 2018/2019

A = 1009/2019

@Cỏ

Khách vãng lai đã xóa

\(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2017\cdot2019}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{2019}\right)=\frac{1}{2}\cdot\frac{2018}{2019}\)

\(=\frac{1009}{2019}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
8 tháng 8 2021 lúc 20:18

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{2019}\right)=\frac{1}{2}.\frac{2018}{2019}=\frac{1009}{2019}\)

Khách vãng lai đã xóa
ko biet
Xem chi tiết
Đức Phạm
22 tháng 3 2017 lúc 11:48

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)

\(=1-\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{2017}-\frac{1}{2019}\div2\)

\(=\left(1-\frac{1}{2019}\right)\div2\)

\(=\frac{2018}{2019}\div2\)

\(=\frac{1009}{2019}\)

ST
22 tháng 3 2017 lúc 11:58

Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)

\(2A=1-\frac{1}{2017}\)

\(2A=\frac{2016}{2017}\)

\(A=\frac{2016}{2017}:2\)

\(A=\frac{1008}{2017}\)

Đặng Bá Công
22 tháng 3 2017 lúc 12:05

CÁC CẬU KẾT BẠN VỚI MÌNH NHA

trương gia hòa
Xem chi tiết
~ Kammin Meau ~
3 tháng 5 2021 lúc 19:14

A = 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2017. 2019

= ( 1 - 1/3 ) + ( 1/3 - 1/5 ) + ... + (1/2017 - 1/2019 )

= 1 - 1/2019

= 2018/2019

~ Kammin Meau ~
3 tháng 5 2021 lúc 19:34

S = 1/31 + 1/32 +...+ 1/60

 Ta có các phân số : 1/31, 1/32, ..., 1/59 đều lớn hơn 1/60

 Nên S > 1/60 + 1/60 + 1/60 +...+ 1/60 ( có tất cả 30 phân số )

= 30/60 = 1/2

Vì 1/2 < 4/5 nên S <4/5

Vậy, chứng tỏ S < 4/5

Chúc bạn học tốt !