Cho P=n4+4.Tìm tất cả các số tự nhiên n để P là số nguyên tô
Tìm tất cả các số tự nhiên n để:
1. n4 + 4 là số nguyên tố
2. n1994 + n1993 + 1 là số nguyên tố
1) n4 + 4 = (n4 + 4n2 + 4) - 4n2 = (n2 + 2)2 - (2n)2 = (n2 + 2 + 2n).(n2 + 2 - 2n)
Ta có n2 + 2n + 2 = (n+1)2 + 1 > 1 với n là số tự nhiên
n2 - 2n + 2 = (n -1)2 + 1 1 với n là số tự nhiên
Để n4 + 4 là số nguyên tố => thì n4 + 4 chỉ có 2 ước là chính nó và 1
=> n2 + 2n + 2 = n4 + 4 và n2 - 2n + 2 = (n -1)2 + 1 = 1
(n -1)2 + 1 = 1 => n - 1= 0 => n = 1
Vậy n = 1 thì n4 là số nguyên tố
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
8. Tìm tất cả các số tự nhiên n để :
n4+ 4 là số nguyên tố
n1994+ n1993+ 1 là số nguyên tố
Tìm tất cả các số tự nhiên n để n2+16n là số nguyên tố
Tìm tất cả các số tự nhiên a để19a-8a là số nguyên tố
Tìm tất cả các số tự nhiên để 3n+60 là số nguyên tố
Cho \(P=n^4+4\). Tìm tất cả các số tự nhiên \(n\) để \(P\) là số nguyên tố.
\(P=n^4+4\) là số nguyên tố
mà \(n^4\) là số nguyên tố khi \(n=1\) và \(4\) là hợp số
\(\Rightarrow n\in\left\{1;3;5;7;...2k+1\right\}\left(k\in N\right)\)
cho P=n4+4.Tìm tất cả các số tự nhiên n để P là số nguyên tố
7. Tìm tất cả các số tự nhiên n để :
a. n^4 + 4 là số nguyên tố
b. n\(^{1994}\) + n\(^{1993}\) + 1 là số nguyên tố
a.\(n^4+4=n^4+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2+2n+2\right)\left(n^2-2n+2\right)\)
nguyên tố nên thừa số nhỏ hơn là \(n^2-2n+2=1\Leftrightarrow\left(n-1\right)^2=0\Leftrightarrow n=1\)thỏa mãn đề bài
b. ta có :\(n^{1994}+n^{1993}+1-\left(n^2+n+1\right)=\left(n^{1992}-1\right)\left(n^2+n\right)\)
mà \(1992⋮3\Rightarrow n^{1992}-1⋮n^3-1⋮n^2+n+1\)
nên \(n^{1994}+n^{1993}+1⋮n^2+n+1\)mà nó là số nguyên tố nên
\(n^2+n+1=1\Leftrightarrow n=0\) ( Do n là số tự nhiên nên n= -1 loại bỏ đi )
tìm tất cả các số tự nhiên n để các số sau là số nguyên tố:
a) A = n^2 − 4n + 3
b) B = n^4 + 4
tìm tất cả các số tự nhiên n và k để n4+42k+1 là số nguyên tố
Tìm tất cả các số nguyên n để 4^n -1 chia hết cho 7.
các số Tự nhiên n thỏa mãn co dạng...
Tìm tất cả các cặp số tự nhiên n và k để \(n^4+4^{2k+1}\)là số nguyên tố