Chứng minh đa thức: 4x2004 + 6x2006 + 27 không có nghiệm trong R
Bài 10*. Chứng minh rằng các đa thức sau đây không có nghiệm:
a) f(x) = x2 + 4x + 10 c) f(x) = 5x4 + x2 +
b) g(x) = x2 - 2x + 2017 d) g(x) = 4x2004 + x2018 + 1
`a,`
`f(x)=x^2+4x+10`
\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)
`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)
`->` Đa thức không có nghiệm (vô nghiệm).
`c,`
`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.
Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)
\(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`b,`
`g(x)=x^2-2x+2017`
Vì \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`d,`
`g(x)=4x^2004+x^2018+1`
Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)
\(x^{2018}\ge0\text{ }\forall\text{ }x\)
`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
a) Chứng minh đa thức không có nghiệm.
b) Chứng minh rằng đa thức không có nghiệm.
c) Chứng minh rằng đa thức không có nghiệm.
cho các đa thức P=\(^{x^3-3x^4+4x-2}\), Q(x) =\(3x^4-x^2+2x-4\), R(x)=\(x^3-3x^2-16\)
a) tính f(x)= p(x)+Q(x)-R(x)
b) chứng minh rằng 1 là nghiệm của đa thức P(x) Q(x) nhưng không là nghiệm của R(x)
c)chứng minh rằng f(x) không có nghiệm
Chứng tỏ đa thức 2x2 – x + 1 không có nghiệm trên tập hợp R
Đặt 2x^2-x+1=0
Δ=(-1)^2-4*2*1=1-8=-7<0
=>Đa thức vô nghiệm
Cho đa thức M(x) = x2 - x + 2023 . Chứng minh đa thức M(x) không có nghiệm.
Lời giải:
$M(x)=x^2-x+2023=(x^2-x+\frac{1}{4})+\frac{8091}{4}=(x-\frac{1}{2})^2+\frac{8091}{4}$
Vì $(x-\frac{1}{2})^2\geq 0$ với mọi $x$ nên $M(x)\geq \frac{8091}{4}>0$ với mọi $x$
$\RIghtarrow M(x)\neq 0$ với mọi $x$ nên $M(x)$ không có nghiệm.
Chứng minh các đa thức sau không có nghiệm
a, f(x)=x2-10x+27
b, g(x)=x2+2/3x+4/9
a) Ta có : \(f\left(x\right)=x^2-10x+27=\left(x^2-10+25\right)+2=\left(x-5\right)^2+2\ge2>0\)
Vậy f(x) > 0 => Vô nghiệm.
b) Tương tự : \(g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}=\left(x^2+2.x.\frac{1}{3}+\frac{1}{9}\right)+\frac{4}{9}-\frac{1}{9}=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\)
Vậy g(x) > 0 => Vô nghiệm.
a) Tìm nghiệm đa thức A(x) = 3x - 1
b) Chứng minh rằng đa thức B(x) = x^5 + x + 1 không có nghiệm
a) Cho \(A\left(x\right)=0\)
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(\frac{1}{3}\)là nghiệm của đa thức
b) Đề sai, vì đa thức trên có nghiệm!
chứng minh đa thức 3x^3+3 không có nghiệm
tk tớ học lớp 8 rùi nhưng chứng minnh thì dài lắm tk đi rùi mk giải cho
Chứng minh đa thức f(x) = 5x2 – 10x + 20 không có nghiệm
f(x)=5(x^2-2x+4)
=5(x^2-2x+1+3)
=5(x-1)^2+15>0
=>f(x) ko có nghiệm