tiìm các giá trị nguyên của x biết x+3/x-2
1. Tìm các giá trị nguyên của x để B nhận giá trị nguyên 2.Tìm các giá trị của x để B nhận giá trị nguyên 3. Tìm x biết : (căn x - 2).B + x - 3.căn x + căn 3 - 3x < hoặc bằng 0 B = căn x + 1/căn x - 2 Plsss làm ơn giúp t vs tớ ko bt làm mà cô này hay chửi t lắm huhu
cho biểu thức A=(x+3/x-2+x+2/3-x+x+2/x^2-5x+6):(1-x/x+1)
a.rút gọn biểu thức A
b.tính giá trị của x,biết A>1
c.tìm tất cả các giá trị nguyên của x để biểu thức B=3.A nhận giá trị là một số nguyên
d Khi x>2,tìm giá trị nhỏ nhất của biểu thức C=A.x
a) \(\left(\frac{x+3}{x-2}+\frac{x+2}{3-x}+\frac{x+2}{x^2-5x+6}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{x^2-2x-3x+6}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{x^2-9-x^2+4+x+2}{\left(x-2\right)\left(x-3\right)}\right).\frac{x+1}{1-x}\)
=\(\frac{-3+x}{\left(x-2\right)\left(x-3\right)}.\frac{x+1}{1-x}\)
=\(\frac{1}{\left(x-2\right)}.\frac{x+1}{1-x}\)
=\(\frac{x+1}{\left(x-2\right)\left(1-x\right)}\)
b) Để A >1 \(\Leftrightarrow\frac{x+1}{\left(x-2\right)\left(1-x\right)}>1\)
\(\Leftrightarrow\frac{-\left(1-x\right)\left(3-x\right)}{\left(x-2\right)\left(1-x\right)}\)
\(\Leftrightarrow\frac{x-3}{x-2}>0\)
\(\Rightarrow\orbr{\begin{cases}x-3\ge0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge3\\x>2\end{cases}\Leftrightarrow}x\ge3}\)
\(\Rightarrow\orbr{\begin{cases}x-3< 0\\x-2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< 2\end{cases}\Leftrightarrow}x< 2}\)
Vậy ...
cho biểu thức A=(x+3/x-2+x+2/3-x+x+2/x^2-5x+6):(1-x/x+1)
a.rút gọn biểu thức A
b.tính giá trị của x,biết A>1
c.tìm tất cả các giá trị nguyên của x để biểu thức B=3.A nhận giá trị là một số nguyên
d Khi x>2,tìm giá trị nhỏ nhất của biểu thức C=A.x
Tìm các giá trị nguyên của x để \(\dfrac{x+3}{x-2}\)nhận giá trị nguyên
\(\dfrac{x-2+5}{x-2}=1+\dfrac{5}{x-2}\Rightarrow x-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x-2 | 1 | -1 | 5 | -5 |
x | 3 | 1 | 7 | -3 |
Ta có :
Muốn giá trị trên thuộc Z => thuộc Z
=>x-2 thuộc Ư(5)
Ta có bảng ( điều kiện:x khác 2 và x thuộc Z 0
x-2 | 5 | -5 | 1 | -1 |
x | 7 | -3 | 3 | 1 |
Vậy x thuộc 7;3;-3;1
Để \(\dfrac{x+3}{x-2}\) nhận giá trị nguyên thì:
\(\begin{matrix}x+3⋮x-2\\x-2⋮x-2\end{matrix}\) \(\Leftrightarrow x+3-x+2⋮x-2\) \(\Leftrightarrow5⋮x-2\)
=> \(x-2\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
Có bảng sau :
x-2 | 1 | -1 | 5 | -5 |
x | 3 | 1 | 7 | -3 |
Vậy...
BÀI 3 : cho biết E = \(\frac{3-x}{x-1}\). tìm các giá trị nguyên của x để E có giá trị nguyên
\(E=\frac{3-x}{x-1}=\frac{1-x+2}{x-1}=-1+\frac{2}{x-1}\)
E \(\inℤ\Leftrightarrow x+1\inƯ\left(2\right)=\left\{1;-1:2;-2\right\}\)
=> \(x\in\left\{2;0;3;-1\right\}\)
Vậy \(x\in\left\{2;0;3;-1\right\}\)là giá trị cần tìm
Ta có: \(E=\frac{3-x}{x-1}=\frac{-\left(x-3\right)}{x-1}=\frac{-\left(x-1-2\right)}{x-1}=\frac{-\left(x-1\right)+2}{x-1}=\frac{2}{x-1}-1\)
Để E có giá trị nguyên thì \(\frac{2}{x-1}-1\) có giá trị nguyên
\(\Rightarrow\frac{2}{x-1}\) có giá trị nguyên
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x\in\left\{2;0;3;-1\right\}\)
1. Tìm những giá trị nguyên dương của x thỏa mãn:
\(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
2. Tìm các số nguyên x để các phân số sau có giá trị là một số nguyên và tính giá trị ấy:
\(A=\frac{x+5}{x+1}\)
3. Tìm \(x,y\in Z\), biết: ( x + 4 )( y + 3 ) = 3
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
Tìm các giá trị nguyên của x để giá trị của các phân thức sau có giá trị nguyên:
A=2x^3+x^2+2x+4/2x+1
B=3x^2-8x+1/x-3
C=x^3+2x+5x+10/x^2+4x+4
cho đa thức f(x)=x^4+ax^3+cx^2+d. Biết rằng khi x nhận lần lượt các giá trị là -1,2,3,4 thì f(x) nhận các giá trị tương ứng là 132, 18, 68, 162. Tìm các giá trị nguyên của x để f(x) là số chính phương .
cho đa thức f(x)=x^4+ax^3+cx^2+d. Biết rằng khi x nhận lần lượt các giá trị là -1,2,3,4 thì f(x) nhận các giá trị tương ứng là 132, 18, 68, 162. Tìm các giá trị nguyên của x để f(x) là số chính phương .
CÁC CAO THỦ GIÚP EM VỚI