Cmr: cot 2x -cot 4x =\(\frac{1}{sin2x}\)
Bài 1 :Chứng minh đẳng thức :
a. \(\frac{1-2sin^2x}{1-tanx}=\frac{1+sin2x}{1+tanx}\)
b. \(\frac{cot^2\frac{x}{2}-cot^2\frac{3x}{2}}{cos^2\frac{x}{2}.cosx.\left(1+cot^2\frac{3x}{2}\right)}=8\)
Bài 2:Cho sin(2a+b) = 5sinb . CMR: \(\frac{2tan\left(a+b\right)}{tana}=3\)
\(\frac{1-2sin^2x}{1-tanx}=\frac{cosx\left(1-2sin^2x\right)}{cosx-sinx}=\frac{cosx\left(cos^2x-sin^2x\right)}{cosx-sinx}=\frac{cosx\left(cosx+sinx\right)\left(cosx-sinx\right)}{cosx-sinx}\)
\(=cosx\left(cosx+sinx\right)=\frac{cosx\left(cosx+sinx\right)^2}{cosx+sinx}=\frac{cos^2x+sin^2x+2sinx.cosx}{1+\frac{sinx}{cosx}}=\frac{1+sin2x}{1+tanx}\)
\(\frac{x}{2}=a\Rightarrow\frac{cot^2a-cot^23a}{cos^2a.cos2a\left(1+cot^23a\right)}=\frac{sin^23a\left(cot^2a-cot^23a\right)}{cos^2a.cos2a}=\frac{sin^23a.cot^2a-cos^23a}{cos^2a.cos2a}\)
\(=\frac{sin^23a.cos^2a-cos^23a.sin^2a}{sin^2a.cos^2a.cos2a}=\frac{\left(sin3a.cosa-cos3a.sina\right)\left(sin3a.cosa+cos3a.sina\right)}{sin^2a.cos^2a.cos2a}\)
\(=\frac{sin\left(3a-a\right).sin\left(3a+a\right)}{sin^2a.cos^2a.cos2a}=\frac{sin2a.sin4a}{sin^2a.cos^2a.cos2a}=\frac{2sina.cosa.4sina.cosa.cos2a}{sin^2a.cos^2a.cos2a}\)
\(=\frac{8sin^2a.cos^2a.cos2a}{sin^2a.cos^2a.cos2a}=8\)
\(sin\left(a+b+a\right)=5sin\left(a+b-a\right)\)
\(\Leftrightarrow sin\left(a+b\right)cosa+cos\left(a+b\right).sina=5sin\left(a+b\right).cosa-5cos\left(a+b\right).sina\)
\(\Leftrightarrow6cos\left(a+b\right).sina=4sin\left(a+b\right).cosa\)
\(\Leftrightarrow\frac{2sin\left(a+b\right)cosa}{cos\left(a+b\right)sina}=3\Leftrightarrow\frac{2tan\left(a+b\right)}{tana}=3\)
CMR:
a, \(\frac{\cot^2x-\sin^2x}{\cot^2x-tan^2x}=sin^2x.\cos^2x\)
b, \(\frac{\tan x}{1-\tan^2x}.\frac{\cot^2-1}{\cot x}=1\)
c, \(\frac{1+\sin x.\cos x}{\sin^2x-\cos^2x}=\frac{\tan x+1}{\cot x+1}\)
d, \(\frac{\sin x+\cos x-1}{\sin x-cosx+1}=\frac{\cos x}{1+sinx}\)
Chứng minh
a) \(\frac{sin^22x+4sin^2x-4}{1-8sin^2x-cos4x}=\frac{1}{2}cot^4x\)
b) \(\frac{cos2x}{cot^2x-tan^2x}=\frac{1}{4}sin^22x\)
\(\frac{sin^22x+4sin^2x-4}{1-8sin^2x-cos4x}=\frac{4sin^2x.cos^2x-4\left(1-sin^2x\right)}{1-8sin^2x-\left(1-2sin^22x\right)}=\frac{4sin^2x.cos^2x-4cos^2x}{2sin^22x-8sin^2x}\)
\(=\frac{-4cos^2x\left(1-sin^2x\right)}{8sin^2x.cos^2x-8sin^2x}=\frac{-4cos^2x.cos^2x}{-8sin^2x\left(1-cos^2x\right)}=\frac{cos^4x}{2sin^4x}=\frac{1}{2}cot^4x\)
\(\frac{cos2x}{cot^2x-tan^2x}=\frac{cos2x.sin^2x.cos^2x}{cos^4x-sin^4x}=\frac{\left(cos^2x-sin^2x\right).\left(2sinx.cosx\right)^2}{4\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)}=\frac{1}{4}sin^22x\)
Thu gọn:
a/ cot^2x-cos^2x-cot^2x.cos^2x
b/ (sin^4x+cos^4x-1).(tan^2x+cot^2x+2)
a/ cot^2x-cos^2x-cot^2x.cos^2x
b/ (sin^4x+cos^4x-1).(tan^2x+cot^2x+2)
Giúp mình với ạ
Rút gọn các biểu thức sau
1, \(\dfrac{1+\cot x}{1-\cot x}-\dfrac{2+2\cot^2x}{\left(\tan x-1\right)\left(\tan^2x+1\right)}\)
2, \(\sqrt{\sin^4x+6\cos^2x+3\cos^4x}+\sqrt{\cos^4x+6\sin^2x+3\sin^4x}\)
Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý
Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)
Câu 1 đề vẫn có vấn đề:
\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2\left(1+cot^2x\right)cot^2x}{\left(tanx-1\right)\left(tan^2x+1\right)cot^2x}=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^2x}{tanx-1}\)
\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^3x}{1-cotx}=\dfrac{1+cotx-2cot^3x}{1-cotx}\)
\(=\dfrac{\left(1-cotx\right)\left(1+2cotx+2cot^2x\right)}{1-cotx}=1+2cotx+2cot^2x\)
Có thể coi như ko thể rút gọn tiếp
2.
\(\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)
\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)
\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)
\(=2\left(cos^2x+sin^2x\right)+2=4\)
Câu 1 : chứng minh rằng : cot x-tanx = 2cot2x
Câu 2 : chứng minh rằng : \(\frac{cos^2x-sin^2x}{1+sin2x}=\frac{1-tanx}{1+tanx}\)
\(cotx-tanx=\frac{cosx}{sinx}-\frac{sinx}{cosx}=\frac{cos^2x-sin^2x}{sinx.cosx}=\frac{cos2x}{\frac{1}{2}sin2x}=2cot2x\)
\(\frac{cos^2x-sin^2x}{1+sin2x}=\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sin^2x+cos^2x+2sinx.cosx}=\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{\left(cosx+sinx\right)^2}=\frac{cosx-sinx}{cosx+sinx}\)
\(=\frac{\frac{cosx}{cosx}-\frac{sinx}{cosx}}{\frac{cosx}{cosx}+\frac{sinx}{cosx}}=\frac{1-tanx}{1+tanx}\)
c/m\(\frac{1-\cos x+\sin2x}{\sin2x-\sin x}=\cot x\)
tan^2x+cot^2x+2/sin2x=4
ĐKXĐ: ...
\(\Leftrightarrow tan^2x+cot^2x-2+\frac{2}{sin2x}-2=0\)
\(\Leftrightarrow\left(tanx-cotx\right)^2+2\left(\frac{1-sin2x}{sin2x}\right)=0\)
\(\Leftrightarrow\left(\frac{sin^2x-cos^2x}{sinx.cosx}\right)^2+\frac{\left(sinx-cosx\right)^2}{sinx.cosx}=0\)
\(\Leftrightarrow\left(sinx-cosx\right)^2\left(sinx+cosx\right)^2+sinx.cosx\left(sinx-cosx\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(sinx-cosx\right)^2=0\\\left(sinx+cosx\right)^2=-sinx.cosx\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow1+3sinx.cosx=0\)
\(\Leftrightarrow1+\frac{3}{2}sin2x=0\)
\(\Leftrightarrow sin2x=-\frac{2}{3}\)
Có vẻ hơi xấu, bạn xem lại các bước biến đổi có nhầm lẫn hệ số chỗ nào ko, về cơ bản thì cách làm như vậy