Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Taylor Swift
Xem chi tiết
hotboy2002
Xem chi tiết
Nguyễn Hữu Thế
14 tháng 10 2015 lúc 12:45

rất tiếc em mới học lớp 6

Thành Nguyễn
20 tháng 1 2022 lúc 13:03

dhgxkkkkkkkkkkkkkkkkkkkkk

Khách vãng lai đã xóa
hotboy2002
Xem chi tiết
Thành Nguyễn
20 tháng 1 2022 lúc 13:02

jnymrjd,5

Khách vãng lai đã xóa
chi chăm chỉ
Xem chi tiết
Agami Raito
Xem chi tiết
Akai Haruma
31 tháng 5 2019 lúc 14:17

Lời giải:

Áp dụng BĐT Cauchy cho các số dương:

\(x^2+1\geq 2x\); \(y^2+1\geq 2y\)

\(\Rightarrow M=x^2+y^2+\frac{3}{x+y+1}\geq 2x+2y-2+\frac{3}{x+y+1}\)

hay \(M\geq \frac{5}{3}(x+y)-\frac{7}{3}+\frac{x+y+1}{3}+\frac{3}{x+y+1}\)

Tiếp tục áp dụng BĐT Cauchy:

\(\frac{x+y+1}{3}+\frac{3}{x+y+1}\geq 2\)

\(x+y\geq 2\sqrt{xy}=2\)

Do đó: \(M\geq \frac{5}{3}.2-\frac{7}{3}+2=3\)

Vậy GTNN của $M$ là $3$. Dấu "=" xảy ra khi $x=y=1$

Hạ Mặc Tịch
Xem chi tiết
Trần Minh Hoàng
12 tháng 3 2021 lúc 19:09

\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5}{16}\left(2x+y\right)\ge2\sqrt{\dfrac{3}{16}.3}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\).

Đẳng thức xảy ra khi x = 1; y = 2.

Nguyễn Việt Lâm
12 tháng 3 2021 lúc 19:11

\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)

\(M=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5\left(2x+y\right)}{16}\ge2\sqrt{\dfrac{9\left(2x+y\right)}{16\left(2x+y\right)}}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{11}{4}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)

gãi hộ cái đít
12 tháng 3 2021 lúc 19:12

Ta có: \(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)

\(=\left(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\right)+\dfrac{5}{8}\dfrac{2x+y}{2}\)

Có: \(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\ge2\sqrt{\dfrac{3}{8}\dfrac{2x+y}{2}\dfrac{3}{2x+y}}=\dfrac{3}{2}\)

Dấu '=' xảy ra <=> \(\dfrac{3}{8}\dfrac{2x+y}{2}=\dfrac{3}{2x+y}\)

Có: \(\dfrac{5}{8}\dfrac{2x+y}{2}\ge\dfrac{5}{8}\sqrt{2xy}=\dfrac{5}{4}\)

Dấu '=' xảy ra <=> 2x=y và xy=2

\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\)

Dấu '=' xảy ra <=> x=1, y=2

Vậy GTNN của M là 11/4 <=> x=1;y=2

Zenitisu
Xem chi tiết
gãi hộ cái đít
14 tháng 3 2021 lúc 6:56

Ta có:

\(M=\dfrac{2x+y}{xx}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)

\(=\left(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\right)+\dfrac{5}{8}\dfrac{2x+y}{2}\)

Có: \(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\ge2\sqrt{\dfrac{3}{8}\dfrac{2x+y}{2}\dfrac{3}{2x+y}}=\dfrac{3}{2}\)

Dấu '=' xảy ra \(\Leftrightarrow\dfrac{3}{8}\dfrac{2x+y}{2}=\dfrac{3}{2x+y}\)

Có: \(\dfrac{5}{8}\dfrac{2x+y}{2}\ge\dfrac{5}{8}\sqrt{2xy}=\dfrac{5}{4}\)

Dấu '=' xảy ra \(\Leftrightarrow2x=y,xy=2\)

\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\)

Dấu '=' xảy ra \(\Leftrightarrow x=1,y=2\)

Vậy GTNN của M là \(\dfrac{11}{4}\Leftrightarrow x=1,y=2\)

Trọng Lễ
Xem chi tiết
Phúc Nguyễn
Xem chi tiết
Phùng Khánh Linh
9 tháng 5 2018 lúc 22:13

Mk sửa lại đề bài nha : x + y = 1

Ta viết lại biểu thức M dưới dạng :

M = \(\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{9}{3\left(x+y+1\right)}\)

Áp dụng BĐT Cô - Si dạng Engel vào bài toán , ta có :

\(\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{9}{3\left(x+y+1\right)}\)\(\dfrac{\left(x+y+3\right)^2}{1+1+3\left(x+y+1\right)}=\dfrac{16}{8}=2\)

⇒ MMin = 2 ⇔ x = y = \(\dfrac{1}{2}\)