chứng minh pt bằng cách nhanh nhất
x^2 - (2m -3 )x + 2m -4 = 0
Bài 2: Chứng minh các PT sau là PT bậc nhất một ẩn
a) (m2 + m + 1) x - 3 = 0
b) ( m2 + 2m + 3 ) x - m + 1 = 0
a: \(m^2+m+1=m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Do đó: Phương trình \(\left(m^2+m+1\right)x-3=0\) luôn là pt bậc nhất 1 ẩn
b: \(m^2+2m+3=\left(m+1\right)^2+2>0\)
Do đó: Phương trình \(\left(m^2+2m+3\right)x-m+1=0\) luôn là pt bậc nhất 1 ẩn
a, Ta có : \(m^2+m+1=m^2+m+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Vậy ta có đpcm
b, Ta có : \(m^2+2m+3=m^2+2m+1+2=\left(m+1\right)^2+2>0\)
Vậy ta có đpcm
Ta có \(\Delta =(2m-3)^2-4(m^2-3m)=4m^2-12m+9-4m^2+12m=9>0\forall m\) .
Do đó pt luôn có 2 nghiệm phân biệt.
Bài 1: Cho phương trình: x2 - 2(m+3)x + 2m - 1 = 0
a) Giải phương trình với \(m=\frac{1}{2}\)
b) Tìm m để pt có nghiệm x = 1 và tìm nghiệm còn lại
c) Chứng minh rằng pt luon có 2 nghiệm phân biệt với mọi m
Bài 2: Cho pt:
x2 - 3x + 2m + 6 = 0 (1)
x2 + x - 2m - 10 =0 (2)
a) Giải pt trên với m = -3
b) Tìm m để 2 pt trên có nghiệm chung
c) Chứng minh rằng có ít nhất 1 trong 2 pt trê có nghiệm
Bài 1 : a ) Tại m = \(\frac{1}{2}\)ta được phương trình mới là :
x2 - 7x = 0
<=> x ( x - 7 ) = 0
<=> x = 0 hoặc x - 7 = 0
<=> x = 0 hoặc x = 7
c) x2 - 2( m + 3 )x + 2m - 1 = 0 ( a = 1 ; b = -2m - 6 ; c = 2m - 1 )
Δ = ( - 2m - 6 )2 - 4 . 1 . ( 2m - 1 )
= 4m2 + 24m + 36
= 4 ( m2 + 6m + 9 )
= 4 ( m + 3 )2 ≥ 0 , với ∀m
chứng minh pt x2-2(m-1)x+2m-3 =0 luôu luôn có 2 nghiệm
cho pt x^2-(2m+3)x+m=0.chứng minh pt có 2 nghiệm phân biệt với mọi m.tìm giá trị nhỏ của biểu thức K=x1^2+x2^2
TINH denta >0 va denta se k con tham so m bạn tinh di tui chac chan la vay
chứng minh pt x^2 – 2(m + 1)x + 2m^2 + m + 3 = 0 luôn vô nghiệm với mọi m
\(\Delta'=\left[-\left(m+1\right)\right]^2-\left(2m^2+m+3\right)\)
\(\Delta'=-m^2+m-2\left(1\right)\)
\(\Delta< 0\forall m\) bởi vì:
\(\left\{{}\begin{matrix}a_{\left(1\right)}< 0\\\Delta_{\left(1\right)}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< 0\left(đúng\right)\\1^2-4\left(-1\right)\left(-2\right)< 0\left(đúng\right)\end{matrix}\right.\)
x^2+2(m+1)x-2m^4+m^2=0
chứng minh pt luôn có 2 nghiệm phân biệt
\(\Delta'=\left(m+1\right)^2+2m^4+m^2=2m^4+2m+1\)
\(=2m^4-2m^2+\frac{1}{2}+2m^2+2m+\frac{1}{2}\)
\(=2\left(m^2-\frac{1}{2}\right)^2+2\left(m+\frac{1}{2}\right)^2\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}m^2-\frac{1}{2}=0\\m+\frac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow∄m\) thỏa mãn
Vậy \(\Delta'>0\) \(\forall m\) hay pt luôn có 2 nghiệm pb
pt : x^2 -(2m-3)x+m=0 (x lá ẩn số ,m là tham số). Chứng minh phương trình có hai nghiệm phân biệt x1,x2 với mọi m tìm giá trị nhỏ nhất của biểu thức K= x1^2 +x2^2
Chứng minh các phương trình sau là phương trình bậc nhất 1 ẩn với mọi giá trị của tham số m:
a) (m2 + 1)x - 3 =0
b) (m2 + 2m + 3)x + m - 1 = 0
c) (m2 + 2)x + 4 = 0
d) (m2 - 2m + 2)x + m = 0
a. m2 ≥ 0 ∀ m
=> m2 +1> 0 ∀ m
b. m2 +2m +3 = m2 + 2m +1 +2 = (m + 1)2 + 2 > 0 ∀ m
c. m2 ≥ 0 ∀ m
=> m2 +2> 0 ∀ m
d. m2 - 2m +2 = m2 -2m + 1 +1 = (m - 1)2 + 1 > 0 ∀ m
a) Để phương trình \(\left(m^2+1\right)x-3=0\) là phương trình bậc nhất một ẩn thì \(m^2+1\ne0\)
\(\Leftrightarrow m^2\ne-1\)
mà \(m^2\ge0\forall m\)
nên \(m^2\ne-1\forall m\)
\(\Leftrightarrow m^2+1\ne0\forall m\)
Vậy: Phương trình \(\left(m^2+1\right)x-3=0\) là phương trình bậc nhất một ẩn với mọi giá trị của tham số m
b) Để phương trình \(\left(m^2+2m+3\right)x+m-1=0\) là phương trình bậc nhất một ẩn thì \(m^2+2m+3\ne0\)
\(\Leftrightarrow\left(m+1\right)^2+2\ne0\)
mà \(\left(m+1\right)^2+2\ge2>0\forall m\)
nên \(\left(m+1\right)^2+2\ne0\forall m\)
hay \(m^2+2m+3\ne0\forall m\)
Vậy: Phương trình \(\left(m^2+2m+3\right)x+m-1=0\) luôn là phương trình bậc nhất một ẩn với mọi tham số m
c) Để phương trình \(\left(m^2+2\right)x-4=0\) là phương trình bậc nhất một ẩn thì \(m^2+2\ne0\)
\(\Leftrightarrow m^2\ne-2\)
mà \(m^2\ge0\forall m\)
nên \(m^2\ne-2\forall m\)
\(\Leftrightarrow m^2+2\ne0\forall m\)
Vậy: Phương trình \(\left(m^2+2\right)x+4=0\) là phương trình bậc nhất một ẩn với mọi giá trị của tham số m
d) Để phương trình \(\left(m^2-2m+2\right)x+m=0\) là phương trình bậc nhất một ẩn thì \(m^2-2m+2\ne0\)
\(\Leftrightarrow\left(m-1\right)^2+1\ne0\)
mà \(\left(m-1\right)^2+1\ge1>0\forall m\)
nên \(\left(m-1\right)^2+1\ne0\forall m\)
hay \(m^2-2m+2\ne0\forall m\)
Vậy: Phương trình \(\left(m^2-2m+2\right)x+m=0\) luôn là phương trình bậc nhất một ẩn với mọi tham số m