giải hệ phương trình: \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{1+y}-1=0\\3y-xy-1=0\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}\left(2x+y\right)y+1-4y=0\\xy\left(x+y\right)+x-3y=0\end{matrix}\right.\)
Bài 1: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+32y^2=9y^4+\frac{272}{9}\\x^2+y^2+xy+4=3x+4y\end{matrix}\right.\)
Bài 2: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2-xy-3y^2+3x-y-1=0\\xy+y^2-x+3y=0\end{matrix}\right.\)
Bài 3: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+3xy-9y^2+23y-17=0\\x^2-2xy+3y^2-6y-3=0\end{matrix}\right.\)
Ai nhanh và đúng mình sẽ cho đúng và thêm bạn bè nhé. Thanks! Làm ơn giúp mình !!! PLEASE !!!
Giải các hệ phương trình sau
a)\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\2x+3y=xy+5\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\left(x-y\right)^2+3\left(x-y\right)=4\\2x+3y=12\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\frac{x}{y}+\frac{y}{x}=\frac{13}{6}\\x+y=5\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}x+y+xy=7\\x+y^2+xy=13\end{matrix}\right.\)
Giải các hệ phương trình:
\(a,\left\{{}\begin{matrix}\frac{3x-2y}{5}+\frac{5x-3y}{3}=x+1\\\frac{2x-3y}{3}+\frac{4x-3y}{2}=y+1\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}\frac{1}{x-3}-\frac{1}{y-1}=0\\3x-2y=7\end{matrix}\right.\)
giải hệ phương trình
\(a,\left\{{}\begin{matrix}\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\\y+\frac{y}{\sqrt{x^2-1}}=\frac{35}{12}\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}2x^2+3xy-2y^2-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{matrix}\right.\)
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}2\left(x+1\right)-3y=-10\\3x+2y+5=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x+1}{2}-\dfrac{y-2}{3}=1\\4x+3y=1\end{matrix}\right.\)
Giải hệ pt:
a)\(\left\{{}\begin{matrix}x^2+y^2+x+y=18\\x\left(x+1\right).y\left(y+1\right)=72\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\3y-1=xy\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}2x+3y=xy+5\\\frac{1}{x}+\frac{1}{y+1}=1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\sqrt{\frac{x}{y}}-3\sqrt{\frac{y}{x}}=2\\x-y+xy=1\end{matrix}\right.\) e)\(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
HELP ME :((
a/ \(\left\{{}\begin{matrix}\left(x^2+x\right)+\left(y^2+y\right)=18\\\left(x^2+x\right)\left(y^2+y\right)=72\end{matrix}\right.\)
Theo Viet đảo, \(x^2+x\) và \(y^2+y\) là nghiệm của:
\(t^2-18t+72=0\Rightarrow\left[{}\begin{matrix}t=12\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=12\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\left\{2;-3\right\}\\y=\left\{3;-4\right\}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\left\{3;-4\right\}\\y=\left\{2;-3\right\}\end{matrix}\right.\end{matrix}\right.\)
b/ ĐKXĐ: ...
\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\x=\frac{3y-1}{y}\end{matrix}\right.\)
Nhận thấy \(y=\frac{1}{3}\) không phải nghiệm
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\\frac{1}{x}=\frac{y}{3y-1}\end{matrix}\right.\) \(\Rightarrow\frac{y}{3y-1}+\frac{1}{y+1}=1\)
\(\Leftrightarrow y\left(y+1\right)+3y-1=\left(3y-1\right)\left(y+1\right)\)
\(\Leftrightarrow y^2-y=0\Rightarrow\left[{}\begin{matrix}y=0\left(l\right)\\y=1\end{matrix}\right.\) \(\Rightarrow x=2\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=xy+5\\y+1=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y-1=5\\y+1=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\y+1=xy\end{matrix}\right.\)
\(\Rightarrow y+1=\left(3-y\right)y\)
\(\Leftrightarrow y^2-2y+1=0\Rightarrow y=1\Rightarrow x=2\)
Giải hệ phương trình \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y-1}=1\\3y-1=xy\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y-1}=1\left(1\right)\\3x-1=xy\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{1}{x}+\frac{1}{y-1}=1\)
\(\Leftrightarrow\frac{y-1+x}{x\left(y-1\right)}=1\)
\(\Leftrightarrow x+y-1=xy-x\)
\(\Leftrightarrow2x+y-1=xy\)
Lại theo (2) nên ta có :
\(2x+y-1=3y-1\)
\(\Leftrightarrow2x-2y=0\)
\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Thay lên ta được : \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{x-1}=1\\3y-1=y^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3\pm\sqrt{5}}{2}\\y=\frac{3\pm\sqrt{5}}{2}\end{matrix}\right.\)
giải hệ:
a) \(\left\{{}\begin{matrix}\sqrt{x+3y}+\sqrt{x+y}=2\\\sqrt{x+y}+y-x=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\\2x^2y+xy^2-4xy=2x-y\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}2x^2+xy=y^2-3y+2\\x^2-y^2=3\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x^2+y^2+z^2+2xy-xz-zy=3\\x^2+y^2-2xy-xz+zy=-1\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x^2-y^2+5x-y+6=0\\x^2+\left(x-y\right)^2=2+\sqrt{6x+7}+2\sqrt{x+y+1}\end{matrix}\right.\)