Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thu Hải
Xem chi tiết
Jeong Soo In
26 tháng 3 2020 lúc 20:47

Đặt: \(A=\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}\)

Ta có: \(A=\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}\)

\(\Rightarrow A=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{50}\right)\)

\(\Rightarrow A< \frac{1}{4}.\frac{99}{50}\)

\(\Rightarrow A< \frac{99}{200}< \frac{1}{2}\)

Vậy: \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}\left(đpcm\right)\)

Khách vãng lai đã xóa
Đồng Minh Phương
Xem chi tiết
Hoàng Nguyễn Văn
8 tháng 2 2020 lúc 12:18

Đặt    \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)

\(A=\frac{1}{4}+\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=\frac{1}{4}+\frac{1}{4}\cdot B\)

Ta có     \(\frac{1}{2^2}< \frac{1}{1\cdot2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3}\)

\(...\)

\(\frac{1}{50^2}< \frac{1}{49\cdot50}=\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{4}\cdot1=\frac{1}{2}\)

Khách vãng lai đã xóa
Bùi Ngọc Nam Phong
Xem chi tiết
nguyen thi thuy
Xem chi tiết
hiếu nguyễn minh
Xem chi tiết
Nguyễn Đình Dũng
11 tháng 7 2015 lúc 19:03

A = ( 1 + 1/3 ) + ( 1 + 1/15 ) + ( 1 + 1/35 ) + ( 1 + 1/63 ) + .... + ( 1 + 1/9999 )

A = ( 1 + 1 + 1 + ...) + ( 1/3 + 1/15 + 1/35 + 1/63 + ....+ 1/9999 )

tự làm tiếp

Đinh Thu Trang
2 tháng 9 2021 lúc 10:27

kết quả bằng 1 / 3 nhé bạn

Khách vãng lai đã xóa
Bùi Châu Anh
Xem chi tiết
Nguyễn Phương Uyên
27 tháng 4 2018 lúc 19:36

\(Đ\text{ặt }S=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+....+\frac{1}{10000}\)

\(S=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(S=\frac{1}{2^2}\cdot\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Ta có :

\(\frac{1}{2^2}< \frac{1}{1\cdot2};\text{ }\frac{1}{3^2}< \frac{1}{2\cdot3};\text{ }...;\text{ }\frac{1}{50^2}< \frac{1}{49\cdot50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)

\(\Rightarrow\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}\cdot2\)

\(\Rightarrow S< \frac{1}{2}\) (ĐPCM)

SKT Khan
30 tháng 4 2018 lúc 16:15

Đặt \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+....+\frac{1}{10000}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{100^2}\)

\(\Rightarrow4A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}\)

\(\Rightarrow4A< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

\(\Rightarrow4A=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow4A< 2-\frac{1}{50}< 2\)

\(\Rightarrow4A< 2\Rightarrow A< \frac{2}{4}=\frac{1}{2}\)

=>a<1/2

Trần Khánh Châu
Xem chi tiết
HA NGOC ANH
Xem chi tiết
Phạm Minh Ngọc
Xem chi tiết
Hoang Hung Quan
17 tháng 3 2017 lúc 22:18

Đặt \(A=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{10000}\)

Ta có:

\(A=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{10000}\)

\(\Rightarrow A=\dfrac{1}{4}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(\Rightarrow A< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)\)

\(\Rightarrow A< \dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

\(\Rightarrow A< \dfrac{1}{4}\left(1+1-\dfrac{1}{50}\right)\)

\(\Rightarrow A< \dfrac{1}{4}.\dfrac{99}{50}\)

\(\Rightarrow A< \dfrac{99}{200}< \dfrac{1}{2}\)

Vậy \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{10000}< \dfrac{1}{2}\) (Đpcm)

Bùi Ngọc Minh
17 tháng 3 2017 lúc 22:20

\(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+...+\dfrac{1}{10000}=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

\(=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)=\dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=\dfrac{1}{4}\left(1+1-\dfrac{1}{50}\right)=\dfrac{1}{4}\left(2-\dfrac{1}{50}\right)< \dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+...+\dfrac{1}{10000}< \dfrac{1}{2}\)