Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2018 lúc 16:09

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 8 2018 lúc 12:44

Đáp án C

Thầy Tùng Dương
Xem chi tiết
Đỗ Đình Nhất
26 tháng 2 2021 lúc 21:17

Gọi parabol có dạng y=ax2

Vì P đi qua A(-2;-2)\(\Rightarrow\)a=-\(\dfrac{1}{2}\)
\(\Rightarrow\)P có dạng y= -\(\dfrac{1}{2}\)x2 (1)

vì khoảng cách đến trục hoành gấp đôi khoảng cách đến trục tung\(\Rightarrow\)\(\left|y\right|\)=2\(\left|x\right|\)

Nếu x>0 thì y>0 (vô lí)

Nếu x<0 thì y<0\(\Rightarrow\)y=-2x    (2)

Từ (1) và (2) có x=4 và y=-2

hoặc x=-4 và y= -2
vậy M(4;-2) hoặc(-4;-2)

Khách vãng lai đã xóa
Tuấn Phạm
19 tháng 2 2021 lúc 20:17
Khách vãng lai đã xóa
Tuấn Phạm
21 tháng 2 2021 lúc 8:18
Khách vãng lai đã xóa
jihun
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 20:00

Sửa: \(\left(d\right):y=\left(m-2\right)x+m+1\)

PT giao (d) với Ox \(y=0\Leftrightarrow x\left(m-2\right)=-m-1\Leftrightarrow x=\dfrac{m+1}{2-m}\Leftrightarrow A\left(\dfrac{m+1}{2-m};0\right)\Leftrightarrow OA=\left|\dfrac{m+1}{2-m}\right|\)

PT giao (d) với Oy \(x=0\Leftrightarrow y=m+1\Leftrightarrow B\left(0;m+1\right)\Leftrightarrow OB=\left|m+1\right|\)

Áp dụng HTL: \(\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{\left(\sqrt{2}\right)^2}=\dfrac{1}{2}\)

\(\Leftrightarrow\left|\dfrac{2-m}{m+1}\right|^2+\dfrac{1}{\left|m+1\right|^2}=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{\left(2-m\right)^2}{\left(m+1\right)^2}+\dfrac{1}{\left(m+1\right)^2}=\dfrac{1}{2}\\ \Leftrightarrow2\left(2-m\right)^2+2=\left(m+1\right)^2\\ \Leftrightarrow8-8m+2m^2+2=m^2+2m+1\\ \Leftrightarrow m^2-10m+9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\) thỏa mãn đề bài

NGUYỄN VĂN A
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 1:16

a:Thay x=-2 và y=0 vào (d), ta được:

-2(m-1)+4=0

=>-2(m-1)=-4

=>m-1=2

=>m=3

b: (d): y=2x+4

loading...

Mai Quỳnh Anh
Xem chi tiết
sunny
Xem chi tiết
Sa Sa
Xem chi tiết
Hà Mi
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 8 2021 lúc 20:02

Đồ thị hàm nhận \(x=1\)  là tiệm cận đứng

Gọi \(M\left(a;b\right)\Rightarrow b=\dfrac{2a+1}{a-1}\)

Khoảng cách từ M đến trục hoành: \(\left|y_M\right|=\left|b\right|\)

Khoảng cách từ M đến tiệm cận đứng: \(\left|x_M-1\right|=\left|a-1\right|\)

Ta được hệ: \(\left\{{}\begin{matrix}b=\dfrac{2a+1}{a-1}\\\left|b\right|=\left|a-1\right|\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(0;-1\right);\left(4;3\right)\)

Có 2 điểm M thỏa mãn: \(\left[{}\begin{matrix}M\left(0;-1\right)\\M\left(4;3\right)\end{matrix}\right.\)