Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lấp La Lấp Lánh
27 tháng 10 2021 lúc 10:21

\(\left|2x-5\right|+\left|2x^2-7x+5\right|=0\)

\(\left\{{}\begin{matrix}2x-5=0\\2x^2-7x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\\left(2x-5\right)\left(x-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{5}{2}\)

Noob_doge
27 tháng 10 2021 lúc 12:04

 

{2x−5=02x2−7x+5=0⇔{2x−5=0(2x−5)(x−1)=0

Phong Nguyệt
Xem chi tiết
TV Cuber
1 tháng 4 2022 lúc 20:30

cho mik hỏi rằng là 3x2 + 4x = 0 hay  3x2 + 4x = 0

Lê Anh Khoa
1 tháng 4 2022 lúc 21:02

ông ơi mấy bài này bấm máy tính là ra mà ông

 

Nguyễn Hữu Minh
1 tháng 4 2022 lúc 21:04

a) \(3x^2+4x=0\Leftrightarrow\left(3x+4\right)x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+4=0\Leftrightarrow x=-\dfrac{4}{3}\end{matrix}\right.\)

   ➤\(x\in\left\{0;-\dfrac{4}{3}\right\}\)

b) \(-2x^2-8=0\Leftrightarrow-2x^2+\left(-2\right)\cdot4=0\)

                           \(\Leftrightarrow\left(x^2+4\right)\cdot\left(-2\right)=0\\ \Leftrightarrow x^2+4=0\\\Rightarrow x^2=\varnothing\Leftrightarrow x=\varnothing \) 

                          vì với mọi x, ta luôn đúng với: \(x^2\ge0\Leftrightarrow x^2+4\ge4>0\)

\(x=\varnothing\)

c)\(2x^2-7x^2+5=0\)

+) \(a+b+c=2+\left(-7\right)+5=7-7=0\)

Do đó, phương trình có 2 nghiệm sau:

\(x=1\) và \(x=\dfrac{5}{2}=2,5\)

\(x\in\left\{1;2,5\right\}\)

d) \(x^2-8x-48=0\)

+)\(\Delta=\left(-8\right)^2-4\cdot1\cdot\left(-48\right)=64+192=266>0\)

\(\Leftrightarrow\sqrt{\Delta}=\sqrt{266}\)

➢Do đó, ta có: \(\left[{}\begin{matrix}x=\dfrac{\sqrt{266}-\left(-8\right)}{2\cdot2}=\dfrac{\sqrt{266}+8}{4}\\x=\dfrac{-\sqrt{266}-\left(-8\right)}{2\cdot2}=\dfrac{8-\sqrt{266}}{4}\end{matrix}\right.\)

➤ \(x\in\left\{\dfrac{8+\sqrt{266}}{4};\dfrac{8-\sqrt{266}}{4}\right\}\)

người ngoài hành tinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2022 lúc 21:48

a: =>7-x=0

hay x=7

b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)

người ngoài hành tinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2022 lúc 21:18

a: =>-x+7=0

hay x=7

b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)

chuche
Xem chi tiết
Hải Đăng Nguyễn
18 tháng 4 2022 lúc 20:52

lớp 9=))???

Anh Công Trần
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2022 lúc 22:38

\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+1}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=-2m+1\\4x_1x_2=2m-2\end{matrix}\right.\)

Cộng vế với vế:

\(\Rightarrow2\left(x_1+x_2\right)+4x_1x_2=-1\)

Đây là hệ thức liên hệ các nghiệm ko phụ thuộc m

đấng ys
Xem chi tiết
NOOB
Xem chi tiết
T . Anhh
9 tháng 3 2023 lúc 17:06

a) \(2x^2-5x+1=0\)

\(\Delta=b^2-4ac\Rightarrow\left(-5\right)^2-4.2.1=17>0\)

Phương trình có 2 nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{17}}{2.2}=\dfrac{5+\sqrt{17}}{4}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{17}}{2.2}=\dfrac{5-\sqrt{17}}{4}\)

___________________________________________________

b) \(4x^2+4x+1=0\)

\(\Delta=b^2-4ac\Rightarrow4^2-4.4.1=0\)

Vậy phương trình có nghiệm kép:

___________________________________________________

c) \(5x^2-x+2=0\)

\(\Delta=b^2-4a\Rightarrow\left(-1\right)^2-4.5.2=-39\)

Vậy phương trình vô nghiệm.

⭐Hannie⭐
9 tháng 3 2023 lúc 17:55

\(a,2x^2-5x+1=0\)

\(\Delta=-b^2-4ac\)

\(\Delta=25-8\)

\(\Delta=17\)

Vậy phương trình có `2` nghiệm phân biệt  :

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+\sqrt{17}}{4} \)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-\sqrt{17}}{4}\)

\(b,4x^2+4x+1=0\)

\(\Delta=b^2-4ac\)

\(\Delta=16-16=0\)

Vậy phương trình có nghiệm kép :

\(x=\dfrac{-b}{2a}=-\dfrac{4}{8}=-\dfrac{1}{2}\)

\(c,5x^2-x+2=0\)

\(\Delta=1-40\)

\(\Delta=-39\)

Vậy phương trình vô nghiệm .

 

 

Trương Thi Phiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2022 lúc 9:29

a: ĐKXĐ: x<>0

\(\Leftrightarrow3x^2+10x-3x-10=0\)

=>(3x+10)(x-1)=0

=>x=-10/3 hoặc x=1

b: ĐKXĐ: \(x\in R\)

\(\Leftrightarrow4x-17=0\)

hay x=17/4

c: ĐKXĐ: \(x\ne-5\)

=>2x-5=0

hay x=5/2

d: ĐKXĐ: x<>-2/3

\(\Leftrightarrow\left(2x-1\right)\left(3x+2\right)=5\)

\(\Leftrightarrow6x^2+4x-3x-2-5=0\)

\(\Leftrightarrow6x^2+x-7=0\)

=>(6x+7)(x-1)=0

=>x=1 hoặc x=-7/6

Hoàng Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 5 2022 lúc 20:56

a: Khi m=9 thì phương trình trở thành:

\(2x^2-19x+39=0\)

\(\Leftrightarrow2x^2-6x-13x+39=0\)

=>(x-3)(2x-13)=0

=>x=13/2 hoặc x=3

b: \(\text{Δ}=\left(2m+1\right)^2-4\cdot2\cdot\left(m^2-9m+39\right)\)

\(=4m^2+4m+1-8m^2+72m-312\)

\(=-4m^2+76m-311\)

\(=-\left(4m^2-76m+361-50\right)\)

\(=-\left(2m-19\right)^2+50\)

Để phương trình có hai nghiệm thì \(-\left(2m-19\right)^2+50>=0\)

\(\Leftrightarrow-\left(2m-19\right)^2>=-50\)

\(\Leftrightarrow\left(2m-19\right)^2< =50\)

hay \(\dfrac{-5\sqrt{2}+19}{2}< =m< =\dfrac{5\sqrt{2}+19}{2}\)

Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+1}{2}\\x_1x_2=\dfrac{m^2-9m+39}{2}\end{matrix}\right.\)

Đến đây bạn chỉ cần kết hợp cái x1+x2 và x1=2x2 để lập hệ phương trình, xong sau đó bạn chỉ cần thay vào cái tích rồi tìm m là xong