Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Pha
Xem chi tiết
Nguyễn Hoàng Anh
5 tháng 10 2018 lúc 19:52

cm sao bạn 

Anh Pha
5 tháng 10 2018 lúc 20:08

=<3/4

Nguyễn Hoàng Dung
Xem chi tiết
tth_new
17 tháng 6 2019 lúc 9:33

Ta có:\(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a\left(a+b\right)+c\left(a+b\right)}}\)

\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) (Áp dụng BĐT AM-GM)

Tương tự với hai BĐT còn lại và cộng theo vế ta thu được đpcm.

Hà Phan
Xem chi tiết
Phan Văn Huân
8 tháng 12 2016 lúc 21:37

Ta có : \(3=ab+bc+ac\ge3\sqrt[3]{\left(abc\right)^2}\Rightarrow1\ge abc\)

\(\frac{bc}{a^2\left(b+2c\right)}+\frac{ac}{b^2\left(c+2a\right)}+\frac{ab}{c^2\left(a+2b\right)}\)

\(=\frac{\left(bc\right)^2}{abc\left(ab+2ac\right)}+\frac{\left(ac\right)^2}{abc\left(bc+2ab\right)}+\frac{\left(ab\right)^2}{abc\left(ca+2cb\right)}\)

\(\ge\frac{\left(ab+bc+ac\right)^2}{abc\left(3ab+3ac+3bc\right)}\)\(=\frac{3^2}{9abc}\)\(\ge1\)\(\left(dpcm\right)\)

Lê Tài Bảo Châu
Xem chi tiết
Phạm Thành Đông
27 tháng 5 2021 lúc 18:08

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\left(a,b,c>0\right)\).

Với \(a,b>0\), ta có:

\(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\).

\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\).

\(\Leftrightarrow a^4-a^3-a+1\ge0\).

\(\Leftrightarrow a^4-a^3+1\ge a\).

\(\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\).

\(\Leftrightarrow\sqrt{a^4-a^3+ab+2}\ge\sqrt{ab+a+1}\).

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a-1=0\Leftrightarrow a=1\).

Chứng minh tương tự (với \(b,c>0\)), ta được:

\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\left(2\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=1\).

Chứng minh tương tự (với \(a,c>0\)), ta được:

\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+a+1}}\left(3\right)\)

Dấu bằng xảy ra \(\Leftrightarrow c=1\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\left(4\right)\).

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki cho 3 số, ta được:

\(\left(1.\frac{1}{\sqrt{ab+a+1}}+1.\frac{1}{\sqrt{bc+b+1}}+1.\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le\)\(\left(1^2+1^2+1^2\right)\)\(\left[\frac{1}{\left(\sqrt{ab+a+1}\right)^2}+\frac{1}{\left(\sqrt{bc+b+1}\right)^2}+\frac{1}{\left(\sqrt{ca+c+1}\right)^2}\right]\).

\(\Leftrightarrow\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le3\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\).

Ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{abc+ac+c}+\frac{abc}{bc+b+abc}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{abc}{b\left(c+1+ac\right)}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{ac}{1+ac+c}+\frac{1}{1+ac+c}=1\).

Do đó:

\(\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\le3.1=3\).

\(\Leftrightarrow\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\le\sqrt{3}\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\)\(\sqrt{3}\)(điều phải chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\sqrt{3}\)với \(a,b,c>0\)và \(abc=1\).

\(+2\)nhé, không phải \(-2\)đâu.

Khách vãng lai đã xóa
Lê Tuấn Nghĩa
Xem chi tiết
Thanh Tùng DZ
3 tháng 8 2019 lúc 8:31

Câu hỏi của TRẦN HỮU ĐẠT - Toán lớp 9 - Học toán với OnlineMath

Kudo Shinichi
Xem chi tiết
Kudo Shinichi
6 tháng 7 2016 lúc 21:00

Trả lời hộ mình đi

trung le quang
Xem chi tiết
Trần Phúc Khang
22 tháng 7 2019 lúc 12:54

3.Áp dụng BĐT \(\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)ta có

\(\frac{ab}{a+3b+2c}=ab.\frac{1}{\left(a+c\right)+2b+\left(b+c\right)}\le\frac{1}{9}ab.\left(\frac{1}{a+c}+\frac{1}{2b}+\frac{1}{b+c}\right)\)

TT \(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{b+a}+\frac{1}{2c}+\frac{1}{c+a}\right)\)

\(\frac{ca}{c+3a+2b}\le\frac{ac}{9}.\left(\frac{1}{a+b}+\frac{1}{2a}+\frac{1}{b+c}\right)\)

=> \(VT\le\frac{1}{18}\left(a+b+c\right)+\Sigma.\frac{1}{9}.\left(\frac{bc}{a+c}+\frac{ba}{a+c}\right)=\frac{1}{18}\left(a+b+c\right)+\frac{1}{9}\left(a+b+c\right)=\frac{1}{6}\left(a+b+c\right)\)

Dấu bằng xảy ra khi a=b=c

Trần Phúc Khang
22 tháng 7 2019 lúc 20:34

2. Chuẩn hóa \(a+b+c=3\)

=> \(ab+bc+ac\le3\)

=> \(c^2+3\ge\left(a+c\right)\left(b+c\right)\)

=> \(\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

=> \(VT\le\Sigma\frac{1}{2}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

Trần Phúc Khang
23 tháng 7 2019 lúc 7:32

1. Ta có \(\sqrt{b^3+1}=\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\frac{1}{2}\left(b^2+2\right)\)

=> \(\frac{a}{\sqrt{b^3+1}}\ge\frac{2a}{2+b^2}=\frac{2a+ab^2-ab^2}{2+b^2}=a-\frac{2ab^2}{b^2+b^2+4}\)

Lại có \(b^2+b^2+4\ge3\sqrt[3]{b^4.4}\)

=> \(\frac{a}{\sqrt{b^3+1}}\ge a-\frac{2ab^2}{3\sqrt[3]{b^4.4}}=a-\frac{2}{3}.a.\sqrt[3]{\frac{b^2}{4}}\)

\(\sqrt[3]{\frac{b^2}{4}.1}=\sqrt[3]{\frac{b}{2}.\frac{b}{2}.1}\le\frac{1}{3}\left(b+1\right)\)

=>\(\frac{a}{\sqrt[3]{b^3+1}}\ge a-\frac{2}{3}.a.\frac{1}{3}\left(b+1\right)=\frac{7a}{9}-\frac{2}{9}ab\)

Khi đó

\(VT\ge\frac{7}{9}\left(a+b+c\right)-\frac{2}{9}\left(ab+bc+ac\right)\)

\(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=12\)

=> \(VT\ge\frac{7}{9}.6-\frac{2}{9}.12=2\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=2

Kudo Shinichi
Xem chi tiết
Phan Văn Hiếu
Xem chi tiết
Nguyễn Thiều Công Thành
17 tháng 9 2017 lúc 22:34

ta có:

\(c+ab=c.1+ab=c\left(a+b+c\right)+ab=ca+cb+c^2+ab=\left(c+a\right)\left(c+b\right)\)

tương tự như vậy thì \(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

áp dụng bđt cô si ta có:

\(\frac{a}{a+c}+\frac{b}{b+c}\ge2\sqrt{\frac{ab}{\left(c+a\right)\left(b+c\right)}};\frac{b}{a+b}+\frac{c}{c+a}\ge2\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}};\frac{a}{a+b}+\frac{c}{b+c}\ge2\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{c}{c+a}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\left(Q.E.D\right)\)