Tìm m để phương trình
\(\left(\frac{x^2}{x-1}\right)^2+\frac{2x^2}{x-1}+m=0\)có 4 nghiệm phân biệt
cho phương trình:\(x^3-\frac{1}{x^3}-\left(m-1\right)\left(x-\frac{1}{x}\right)+m-3=0\)Tìm m để phương trình có đúng 2 nghiệm dương phân biệt
Chứng minh phương trình luôn có 2 nghiệm x1 và x2 phân biệt
\(2x^2+\left(m-1\right)x-2=\)0
Tìm m để
\(\left(x_1+\frac{1}{2}x^2_1-x^3_1\right)\left(x^2+\frac{1}{2}^2_2-x^3_2\right)=4\)
Cho phương trình:\(x^2-2\left(m+1\right).x+4m=0\left(1\right)\)
a, Tìm m để phương trình (1) có 2 nghiệm đối nhau.
b, Tìm m để phương trình (1) có 2 nghiệm phân biệt thỏa mãn:\(\frac{x1}{x2}+\frac{x2}{x1}=4\)
MÌNH ĐANG CẦN GẤP.CẢM ƠN MỌI NGƯỜI NHIỀU Ạ !!!
Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 16m
= 4( m2 + 2m + 1 ) - 16m
= 4m2 + 8m + 4 - 16m = 4m2 - 8m + 4
= 4( m2 - 2m + 1 ) = 4( m - 1 )2 ≥ 0 ∀ m
=> (1) luôn có nghiệm với mọi m
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=4m\end{cases}}\)
a) Để (1) có hai nghiệm đối nhau thì \(\hept{\begin{cases}x_1+x_2=0\\x_1x_2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}2m+2=0\\4m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m< 0\end{cases}}\Leftrightarrow m=-1\left(tm\right)\)
b) \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\left(ĐKXĐ:x_1,x_2\ne0\right)\)
\(\Leftrightarrow\frac{x_1^2}{x_1x_2}+\frac{x_2^2}{x_1x_2}=4\)
\(\Rightarrow x_1^2+x_2^2=4x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)
\(\Leftrightarrow4m^2+8m+4-24m=0\)
\(\Leftrightarrow m^2-4m+1=0\)
Đến đây bạn dùng công thức nghiệm rồi tính nốt nhé :)
Cho phương trình: \(x^2+2\left(m-2\right)x+m^2-2m+4=0\).Tìm m để phương trình có 2 nghiệm phân biệt \(x_1,x_2\)thỏa:
\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)
Xét phương trình trên có:
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)=m^2-4m+4-m^2+2m-4=-2m\)
Để phương trình trên có hai nghiệm phân biệt \(x_1;x_2\)điều kiện là:
\(\Delta'>0\Leftrightarrow-2m>0\Leftrightarrow m< 0\)
Với m<0. Áp dụng định lí Vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=-2\left(m-2\right)\\x_1.x_2=m^2-2m+4\end{cases}}\)
=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(m-2\right)^2-2\left(m^2-2m+4\right)=2m^2-12m+8\)
Ta có:
\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)
<=> \(\frac{2}{2m^2-12m+8}-\frac{1}{m^2-2m+4}=\frac{1}{15m}\)(điều kiện: \(2m^2-12m+8\ne0\))
<=> \(\frac{1}{m^2+4-6m}-\frac{1}{m^2+4-2m}=\frac{1}{15m}\)
<=> \(\frac{4m}{\left(m^2+4-6m\right)\left(m^2+4-2m\right)}=\frac{1}{15m}\)
<=> \(60m^2=\left(m^2+4\right)^2-8m\left(m^2+4\right)+12m^2\)
<=> \(\left(m^2+4\right)^2-8m\left(m^2+4\right)-48m^2=0\)
<=> \(\left(\frac{m^2+4}{m}\right)^2-8\frac{m^2+4}{m}-48=0\)
Đặt t=\(\frac{m^2+4}{m}< 0\)
Ta có phương trình ẩn t:
\(t^2-8t-48=0\Leftrightarrow\orbr{\begin{cases}t=-4\\t=12\left(loai\right)\end{cases}}\)
Với t=-4 ta có:
\(\frac{m^2+4}{m}=-4\Leftrightarrow m^2+4m+4=0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)( tmđk)
vậy m=-2
Cho phương trình
\(x^2-2\left(m-2\right)x+\left(m^2+2m-3\right)=0\)
Tìm các giá trị của m để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn \(\frac{1}{x1}+\frac{1}{x2}=\frac{x1+x2}{5}\)
\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)
=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)
Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)
\(x^2-2\left(m-2\right)x+\left(m^2+2m-3\right)=0\) \(\left(#\right)\)
từ pt \(\left(#\right)\) ta có \(\Delta'=\left[-\left(m-2\right)\right]^2-m^2-2m+3\)
\(\Delta'=m^2-4m+4-m^2-2m+3\)
\(\Delta'=-6m+7\)
để pt \(\left(#\right)\) có 2 nghiệm \(x_1,x_2\) thì \(\Delta'>0\)
\(\Leftrightarrow-6m+7>0\)
\(\Leftrightarrow-6m>-7\)
\(\Leftrightarrow m< \frac{7}{6}\)
theo định lí vi et \(\hept{\begin{cases}x_1+x_2=2m-4\\x_1.x_2=m^2+2m-3\end{cases}}\)
theo bài ra ta có \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
\(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)
\(\Leftrightarrow\left(x_1+x_2\right).5=\left(x_1.x_2\right)\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right).5-\left(x_1.x_2\right)\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(x_1+x_2\right).\left(5-x_1.x_2\right)=0\)
\(\Leftrightarrow\left(2m-4\right)\left(5-m^2-2m+3\right)=0\)
\(\Leftrightarrow\left(2m-4\right)\left(m^2+2m-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2m-4=0\left(1\right)\\m^2+2m-8=0\left(2\right)\end{cases}}\)
từ \(\left(1\right)\) ta có \(m=2\) ( KTM )
từ \(\left(2\right)\) ta có \(m^2+2m-8=0\) \(\left(3\right)\)
từ pt \(\left(3\right)\) ta có \(\Delta'=1^2-\left(-8\right)=1+8=9>0\Rightarrow\sqrt{\Delta'}=3\)
vì \(\Delta'>0\) nên pt \(\left(3\right)\) có 2 nghiệm phân biệt \(m_1=-2+3=1\) ; ( TM )
\(m_2=-2-3=-5\) ( TM )
vậy \(m_1=-5;m_2=1\) là các giá trị cần tìm
Cho phương trình: \(\frac{1}{2}x^2-mx-2=0\) Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn \(\left|x_1\right|=4\left|x_2\right|\)
Bài 1: Tìm m để 2 phương trình có nghiệm tương đương vơi nhau
2x+3 = 0 và (2x +3)(mx-1) = 0
Bài 2: Giải và biện luận phương trình (m là hằng số)
\(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)1)
Bài 3: Tìm các giá trị của hằng số a để phương trình vô nghiệm
\(\frac{a\left(3x-1\right)}{5}-\frac{6x-17}{4}+\frac{3x+2}{10}=0\)
Bài 4: Giải và biện luận phương trình (m là hằng số)
a) \(\frac{mx+5}{10}+\frac{x+m}{4}=\frac{m}{20}\)
b) \(\frac{x-4m}{m+1}+\frac{x-4}{m-1}=\frac{x-4m-3}{m^2-1}\)
HELP!!!!!!!!!!!!!!!!!!! >^<
Cho phương trình \(\left(m-10\right)x^2-4mx+m-4=0\)
a) Tìm m để phương trình có nghiệm
b) Tìm m để phương trình có hai nghiệm phân biệt đều dương
c) Tìm m để phương trình có hai nghiệm x1; x2 sao cho \(\dfrac{1}{x_1}+\dfrac{1}{x^2}>1\)
Trường hợp 1: m=10
Phương trình sẽ là -40x+6=0
hay x=3/20
=>m=10 sẽ thỏa mãn trường hợp a
Trường hợp 2: m<>10
\(\Delta=\left(-4m\right)^2-4\left(m-10\right)\left(m-4\right)\)
\(=16m^2-4\left(m^2-14m+40\right)\)
\(=16m^2-4m^2+56m-160\)
\(=12m^2+56m-160\)
\(=4\left(3m^2+14m-40\right)\)
\(=4\left(3m^2-6m+20m-40\right)\)
\(=4\left(m-2\right)\left(3m+20\right)\)
a: Để phương trình có nghiệm thì (m-2)(3m+20)>=0
=>m>=2 hoặc m<=-20/3
b: Để phương trình có hai nghiệm phân biệt đều dương thì
\(\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\\dfrac{4m}{m-10}>0\\\dfrac{m-4}{m-10}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\m\in\left(-\infty;0\right)\cup\left(10;+\infty\right)\\m\in\left(-\infty;4\right)\cup\left(10;+\infty\right)\end{matrix}\right.\)
\(\Leftrightarrow m\in\left(-\infty;-\dfrac{20}{3}\right)\cup\left(10;+\infty\right)\)
a Tìm m để phương trình \(x^2-\left(2m+1\right)x+m^2+1=0\)
có hai nghiệm phân biệt trong đó nghiệm này
gấp đôi nghiệm kia
b Tìm m để phương trình \(x^2-2mx+m-3=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1+2x_2\) =1
c Tìm m để phương trình \(x^2-2mx+\left(m-1\right)^3=0\)
có hai nghiệm trong đó nghiệm này là bình
phương của nghiệm kia .
d Tìm m để phương trình \(2x^2-\left(m+1\right)x+m+3=0\) có hai nghiệm sao cho hiệu hai nghiệm bằng 1.
d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)
\(=m^2+2m+1-8m-24\)
\(=m^2-6m-23\)
\(=m^2-6m+9-32\)
\(=\left(m-3\right)^2-32\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)
Ta có: \(x_1x_2=\dfrac{m+3}{2}\)
\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)