Cho tam giác nhọn ABC có 2 đường cao BD và CE. Chứng minh \(\Delta ADE~\Delta ABC\)
Cho tam giác nhọn ABC các đường cao BD và CE cắt nhau tại H.
a, C/minh: \(\Delta ABC\sim\Delta ADE\)
b, C/minh: \(BC^2=BD.BH+CE.CH\)
Hình bạn tự vẽ nha.
a) Xét tam giác ADB và tam giác AEC có:
góc BAC là góc chung
góc ADB =góc AEC
Suy ra: Tam giác ADB đồng dạng với tam giác AEC (g.g)
=> AD/AE = AB/AC (cạnh tương ứng)
=> AD/AB = AE/AC
Xét tam giác AED và tam giác ACB có:
góc BAC là góc chung
AD/AB = AE/AC (cmt)
Suy ra tam giác AED đồng dạng với tam giác ACB (c.g.c)
b) Gọi giao điểm của AH và BC là K.
Xét tam giác ABC có
BD và CE là 2 đường cao mà chúng cắt nhau tại H
nên H là trực tâm của tam giác ABC
=>AK vuông góc với BC
Xét tam giác BKH và tam giác BDC có:
góc HBK là góc chung
góc BKH = góc BDC
Suy ra BD/BK = BC/BH
=> BD.BH = BC.BK (1)
Chứng minh tương tự ta cũng có : tam giác CKH đồng dạng với tam giác CEB
=> CK/CE = CH/CB
=> CE.CH = BC.CK (2)
Lấy (1)+(2) ta được đpcm
cho tam giác nhọn ABC 2 đường cao BD và CE hãy biểu thị cosAtheo 2 cách từ đó chứng minh \(\Delta ADE\) ~ \(\Delta ABC\)
Xét tam giác BAD, ta có:
CosA= \(\dfrac{AD}{AB}\) (1)
Xét tam giác CAE, ta có:
CosA= \(\dfrac{AE}{AC}\) (2)
Từ (1) và (2) suy ra:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) (3)
Ta lại có: góc A : góc chung (4)
Từ (3) và (4) suy ra:
Tam giác ADE ∽ tam giác ABC
Cho tam giác ABC nhọn, các đường cao BD và CE cắt nhau ở H. Chứng minh rằng:
a) ΔEHB đồng dạng ΔDHC
b) ΔHED đồng dạng ΔHBC
c) ΔADE đồng dạng ΔABC
d) BD.BH+CH.CE=BC²
a) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔEHB∼ΔDHC(góc nhọn)
b) Ta có: ΔEHB∼ΔDHC(cmt)
\(\Leftrightarrow\frac{HE}{HD}=\frac{HB}{HC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(\frac{HE}{HB}=\frac{HD}{HC}\)
Xét ΔHED và ΔHBC có
\(\frac{HE}{HB}=\frac{HD}{HC}\)(cmt)
\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔHED∼ΔHBC(c-g-c)
c) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{DAB}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
\(\Leftrightarrow\frac{AD}{AE}=\frac{AB}{AC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(\frac{AD}{AB}=\frac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\frac{AD}{AB}=\frac{AE}{AC}\)(cmt)
\(\widehat{DAE}\) chung
Do đó: ΔADE∼ΔABC(c-g-c)
d) Gọi K là giao điểm của AH và BC
Xét ΔABC có
BD là đường cao ứng với cạnh AC(gt)
CE là đường cao ứng với cạnh AB(gt)
BD\(\cap\)CE={H}
Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)
⇔AH⊥BC
⇔AK⊥BC(AH\(\cap\)BC={K})
Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
\(\widehat{DBC}\) chung
Do đó: ΔBKH∼ΔBDC(góc nhọn)
\(\Leftrightarrow\frac{BK}{BD}=\frac{BH}{BC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(BK\cdot BC=BH\cdot BD\)
Xét ΔCKH vuông tại K và ΔCEB vuông tại E có
\(\widehat{ECB}\) chung
Do đó: ΔCKH∼ΔCEB(g-g)
\(\Leftrightarrow\frac{CK}{CE}=\frac{CH}{CB}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(CK\cdot CB=CE\cdot CH\)
Ta có: \(BD\cdot BH+CE\cdot CH=BK\cdot BC+CK\cdot BC\)
\(=BC\cdot\left(BK+CK\right)=BC\cdot BC=BC^2\)(đpcm)
Hình tự vẽ nha:))
a) Xét ΔEHB và ΔDHC có:
∠BEH=∠CDH=90o
∠EHB=∠DHC(đối đỉnh)
Do đó, ΔEHB∼ΔDHC (gg).
b) Xét ΔHED và HBC có:
\(\frac{HE}{HB}=\frac{HD}{HC}\)(ΔEHB∼ΔDHC)
∠DHE=∠BHC (đđ)
Do đó,ΔHED∼ΔHBC(cgc)
c) Xét ΔADB và ΔAEC có:
∠A chung
∠ADB=∠AEC=90o
Do đó, ΔADB∼ΔAEC(gg)
Xét ΔAED và ΔABC có:
∠A chung
\(\frac{AD}{AB}=\frac{AE}{AC}\)(ΔADB∼ΔAEC)
Do đó, ΔAED∼ΔABC(cgc)
d) Vẽ HK⊥BC(K∈BC)
ΔBHK∼ΔBDC(gg)⇒\(\frac{BK}{BD}=\frac{BH}{BC}\)⇔BK.BC=BH.BD
ΔCHK∼ΔCBE(gg)⇒\(\frac{CK}{CE}=\frac{CH}{CB}\)⇔CK.BC=CE.CH
⇒BC(BK+CK)=BH.BD+CE.CH
⇔BC2=BH.BD+CE.CH (đpcm)
Cho ΔABC nhọn, AB<AC. Đường cao BD, CE cắt nhau ở H
a)Chứng minh: \(AE\cdot AB=AD\cdot AC\)
b)Chứng minh: \(\Delta ADE\)ᔕ\(\Delta ABC\)
c)Giả sử góc BAC=45 độ
Tính tỉ số diện tích \(\Delta ADE\) với diện tích tứ giác BEDC
d)Gọi M, N lần lượt là giao điểm của DE với AH và BC
Chứng minh: \(MD\cdot NE=ME\cdot ND\)
a) Xét \(\Delta ABD\) và \(\Delta ACE\), ta có \(\widehat{ADB}=\widehat{AEC}\left(=90^o\right)\) và góc A chung \(\Rightarrow\Delta ABD~\Delta ACE\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AD}{AE}\) \(\Rightarrowđpcm\)
b) Từ \(AE.AB=AD.AC\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét \(\Delta ADE\) và \(\Delta ABC\), ta có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) và góc A chung \(\Rightarrowđpcm\)
c) Do \(\Delta ADE~\Delta ABC\) \(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2\)
Lại có \(\dfrac{AD}{AB}=cosA=cos45^o=\dfrac{1}{\sqrt{2}}\) nên \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{1}{\sqrt{2}}\right)^2=\dfrac{1}{2}\)\(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}-S_{ADE}}=\dfrac{1}{2-1}\) \(\Rightarrow\dfrac{S_{ADE}}{S_{BEDC}}=1\)
d) Kẻ đường cao AF của tam giác ABC. Tương tự câu b, ta chứng minh được các tam giác BFE và CDF cùng đồng dạng với tam giác ABC. Từ đó suy ra \(\Delta BEF~\Delta DCF\) \(\Rightarrow\widehat{BFE}=\widehat{CFD}\) \(\Rightarrow90^o-\widehat{BFE}=90^o-\widehat{CFD}\) \(\Rightarrow\widehat{EFM}=\widehat{DFM}\) \(\Rightarrow\) FM là tia phân giác trong tam giác DEF \(\Rightarrow\dfrac{MD}{ME}=\dfrac{FD}{FE}\).
Mặt khác, \(FN\perp FM\) \(\Rightarrow\) FN là phân giác ngoài của tam giác DEF \(\Rightarrow\dfrac{ND}{NE}=\dfrac{FD}{FE}\). Từ đó suy ra \(\dfrac{MD}{ME}=\dfrac{ND}{NE}\) \(\Rightarrowđpcm\)
Cho tam giác ABC có AB<AC.Hai đường cao BD và CE cắt nhau tại H.
a) So sánh \(\widehat{BAH}\)và \(\widehat{CAH}\)
b) So sánh BD và CE
c) Chứng minh \(\Delta ADE\simeq\Delta ABC\)
Cho \(\Delta ABC\left(AB< AC\right)\). Hai đường cao BD và CE cắt nhau tại H.
a) So sánh 2 đoạn thẳng BD và CE.
b) Chứng minh: 2 tam giác ADE và ABC đồng dạng
Cho ΔABC nhọn có hai đường cao BD và CE.
a) Chứng minh: ΔABD ∽ ΔACE
b) Chứng minh: ΔADE ∽ ΔABC
c) Gọi H là giao điểm của BD và CE, K là giao điểm của AH và BC.Chứng minh rằng: AH ⊥ BC và CH.CE=BC.CK
d) Chứng minh: BH.BD+CH.CE=\(BC^2\)
Cho tam giác ABC nhọn, các đường cao BD và CE cắt nhau ở H. Chứng minh rằng:
a) \(\Delta\)EHB đồng dạng\(\Delta\)DHC
b) \(\Delta\)HED đồng dạng\(\Delta\)HBC
c) \(\Delta\)ADE đồng dạng\(\Delta\)ABC
d) BD.BH+CH.CE=BC\(^2\)
Bài làm:
a) Δ EHB ~ Δ DHC (g.g) vì:
+ \(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
+ \(\widehat{BEH}=\widehat{CDH}=90^0\)
=> đpcm
b) Theo phần a, 2 tam giác đồng dạng
=> \(\frac{HE}{HB}=\frac{HD}{HC}\)
Δ HED ~ Δ HBC (c.g.c) vì:
+ \(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)
+ \(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
=> đpcm
c) Δ ABD ~ Δ ACE (g.g) vì:
+ \(\widehat{ADB}=\widehat{AEC}=90^0\)
+ \(\widehat{A}\) chung
=> \(\frac{AD}{AE}=\frac{AB}{AC}\)
Δ ADE ~ Δ ABC (c.g.c) vì:
+ \(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)
+ \(\widehat{A}\) chung
=> đpcm
d) Gọi F là giao của AH với BC
Δ BHF ~ Δ BCD (g.g) vì:
+ \(\widehat{BFH}=\widehat{BDC}=90^0\)
+ \(\widehat{B}\) chung
=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)
Tương tự ta chứng minh được:
\(CH.CE=FC.BC\left(2\right)\)
Cộng vế (1) và (2) lại ta được:
\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)
=> đpcm
Cho tam giác nhọn ABC các đường cao BD và CE cắt nhau tại H.
a, C/minh: \(\Delta ABC\sim\Delta ADE\)
b, C/minh: \(BC^2=BD.BH+CE.CH\)