cho pt 5x^2+12x−30=0
a.cm pt trên có 2 nghiệm phân biệt
b. gọi x1,x2 là hai nghiệm của pt. không giải pt hãy tính x1+x2+x1x2
Cho pt x²+2x-8=0 gọi x1;x2 là hai nghiệm của pt. Không giải pt mà tính. M=x1(1–x2)+x2(1–x1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-8\end{matrix}\right.\)
\(M=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)
\(=x_1+x_2-2x_1x_2\)
\(=-2-2.\left(-8\right)=14\)
1. Cho pt \(3x^2+4x+1=0\)
có nghiệm x1,x2, không giải pt, hãy tính giá trị biểu thức \(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)
2. . Cho pt \(3x^2-5x-1=0\)
có nghiệm x1,x2, không giải pt, hãy tính giá trị biểu thức \(D=\dfrac{x_1-x_2}{x_1}+\dfrac{x_2-1}{x_2}\)
3. . Cho pt \(3x^2-7x-1=0\)
có nghiệm x1,x2, không giải pt, hãy tính giá trị biểu thức \(B=\dfrac{2x^2_2}{x_1+x_2}+2x_1\)
1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)
\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)
\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)
\(1,3x^2+4x+1=0\)
Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)
Ta có :
\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)
\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)
\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)
\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{S^2-2P-S}{P-S+1}\)
\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)
\(=\dfrac{11}{12}\)
Vậy \(C=\dfrac{11}{12}\)
\(3,3x^2-7x-1=0\)
Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{7}{3}\\P=x_1x_2=\dfrac{c}{a}=-\dfrac{1}{3}\end{matrix}\right.\)
Ta có :
\(B=\dfrac{2x_2^2}{x_1+x_2}+2x_1\)
\(=\dfrac{2x_2^2+2x_1\left(x_1+x_2\right)}{x_1+x_2}\)
\(=\dfrac{2x_2^2+2x_1^2+2x_1x_2}{x_1+x_2}\)
\(=\dfrac{2\left(x_1^2+x_2^2\right)+2x_1x_2}{x_1+x_2}\)
\(=\dfrac{2\left(S^2-2P\right)+2P}{S}\)
\(=\dfrac{2\left(\dfrac{7}{3}^2-2\left(-\dfrac{1}{3}\right)\right)+2\left(-\dfrac{1}{3}\right)}{\dfrac{7}{3}}\)
\(=\dfrac{104}{21}\)
Vậy \(B=\dfrac{104}{21}\)
Cho pt (m+1)x2-2(m-1)x+m-2=0
a, Xác định m để pt có 2 nghiệm phân biệt
b, Xác định m để pt có một nghiệm bằng 2. Tìm nghiệm kia
c, Xác định m để pt có 2 nghiệm x1; x2 thỏa mãn 1/x1 + 1/x2 = 7/4; 1/x1 + 1/x2 = 1; x12+x22=2
d, Xác định m để pt có 2 nghiệm thỏa mãn 3(x1+x2)=5x1x2
cho PT 2x^2-3x-1=0. x1, x2 là 2 nghiệm của PT, không giải PT hãy tính A = x1^4 + x2^4. B = I x1-x2 I
Giúp mk với mk gấp quá
Cho pt x^2 -2mx - 4m-5=0
a) tính tổng và tích của hai nghiệm theo m
b) gọi x1, x2 là 2nghiệm của pt. Tìm m để pt có gai nghiệm thỏa mãn x1^2 + x2^2 - x1x2 = 2x1+2x2 +27
Cho pt bậc 2 ẩn x: x2 + 3x + m = 0. a) Giải pt (1) khi m = 0; m = -4. b) Tìm m để pt (1) vô nghiệm. c) Tìm m để pt (1) có một nghiệm là -1. Tìm nghiệm kia. d) Cho x1, x2 là 2 nghiệm của pt (1). Không giải pt, hãy tìm giá trị của m để: 1/ x1^2 + x2^2=34 2/ x1 - x2=6 3/ x1=2x2 4/ 3x1+2x2=20 5/ x1^2-x2^2=30.
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
cho pt x2-2(m+1)x+m-4=0
a, Giải pt khi m= -5
b, CMR pt luôn có nghiệm x1, x2 với mọi m
c, Tìm m để pt có 2 nghiệm trái dấu
d, Tìm m để pt có 2 nghiệm dương
e, CMR biểu thức A=x1(1-x2)+x2(1-x1) không phụ thuộc m
f, Tính giá trị của biểu thức x1-x2
Cho pt x^2-mx-1=0 a) chứng minh pt có 2 nghiệm trái dấu b) gọi x1,x2 là các nghiệm của pt 1 Tính giá trị của biểu thức P= x1^2+x1-1/x1 - x2^2+x2-1/x2
giải giúp em bài này được không ạ
cho pt; x^2-4x-3m+1=0a
a. Tìm m để pt vó nghiệm
b. Gọi 2 nghiệm của pt là x1, x2. Tính A=x1^2=x2^2 theo m