Tìm GTNN của \(M=\left(2x-x^2\right)\left(y-2y^2\right)\)với \(0\le x\le2;0\le y\le\frac{1}{2}\)
Cho các số thực x, y, z đôi một khác nhau sao cho \(0\le x,y,z\le2\). Tìm GTNN của biểu thức \(P=\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\)
cho x,y,z đôi một khác nhau sao cho \(0\le x,y,z\le2.\) Tìm GTNN của biểu thức
\(P=\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\)
Đặt \(a=x-y;b=y-z\) thì \(2\ge a,b\ge-2\) và a, b khác 0; \(a\ne-b\)( vì nếu a = -b thì a + b = 0 hay x -z = 0 => z - x = 0 (vô lí) )
Xét: \(2\ge a,b>0\) thì \(\frac{9}{\left(a+b\right)^2}\ge\frac{9}{\left(2+2\right)^2}=\frac{9}{16}\) vì khi đó a + b >0 nên (a+b)2 \(\le\left(2+2\right)^2=16\))
Xét \(-2\le a,b< 0\) thì a + b < 0 suy ra \(\left(a+b\right)^2< \left(-2+-2\right)^2=16\)
Từ 2 trường hợp trên ta suy ra \(\frac{9}{\left(a+b\right)^2}\ge\frac{9}{16}\).
Ta có: \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}\ge\frac{2}{ab}+\frac{1}{\left(a+b\right)^2}\ge\frac{8}{\left(a+b\right)^2}+\frac{1}{\left(a+b\right)^2}=\frac{9}{\left(a+b\right)^2}\ge\frac{9}{16}\)
Vậy...
P/s: Em ko chắc. @Nguyễn Việt Lâm: Em làm thế này có đúng ko ạ? Em ko chắc chỗ xét 2 th ấy, có giải thích quá....:((
1/Giải hpt: \(\left\{{}\begin{matrix}x^2+y^2=2\\\left(x+2y\right)\left(2+3y^2+4xy\right)=27\end{matrix}\right.\)
2/ Cho x,y là các số thực TM: \(1\le y\le2;xy+2\ge2y\). Tìm GTNN:
\(M=\frac{x^2+4}{y^2+1}\)
Cho \(1\le x< y\le2\). Tìm GTNN của
\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)
Đề là GTLN nha bạn.
GTNN thì luôn là 4 với mọi x, y >0 theo AM-GM.
với x,y là những số thực thoả mãn điều kiện :\(0< x\le y\le2\) và \(2x+y\ge2xy\).TÌm GTLN của biểu thức:
\(P=x^2\left(x^2+1\right)+y^2\left(y^2+1\right)\)
Cho x, y thỏa mãn \(0< x\le y\le2\) và \(2x+y\ge2xy\)
Tìm GTLN của
P = \(x^2\left(x^2+1\right)+y^2\left(y^2+1\right)\)
Biểu thức F=y-x đạt Min với đk \(\left\{{}\begin{matrix}-2x+y\le-2\\x-2y\le2\\x+y\le5\\x\ge0\end{matrix}\right.\) tại điểm S(x;y) có tọa độ là
Cho \(0\le x,y,z\le3\) . Tìm GTLN của:
\(A=\sqrt{x^2+y\left(y-2x\right)}+\sqrt{y^2+z\left(z-2y\right)}+\sqrt{z\left(z-2x\right)+x^2}\)
\(A=\sqrt{x^2+y\left(y-2x\right)}+\sqrt{y^2+z\left(z-2y\right)}+\sqrt{x^2+z\left(z-2x\right)}\)
\(=\sqrt{x^2-2xy+y^2}+\sqrt{y^2-2yz-z^2}+\sqrt{x^2-2xz+z^2}\)
\(=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)
\(=x-y+y-z+z-x\)
\(=0\)
Giúp mình bài này, thanks trước
Với x, y là số thực thỏa \(0< x\le y\le2\), \(2x+y\ge2xy\). Tìm GTLN của bt
\(P=x^2\left(x^2+1\right)+y^2\left(y^2+1\right)\)