Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Lan Thy
Xem chi tiết
nam do
Xem chi tiết
tthnew
16 tháng 10 2019 lúc 8:34

Đặt \(a=x-y;b=y-z\) thì \(2\ge a,b\ge-2\) và a, b khác 0; \(a\ne-b\)( vì nếu a = -b thì a + b = 0 hay x -z = 0 => z - x = 0 (vô lí) )

Xét: \(2\ge a,b>0\) thì \(\frac{9}{\left(a+b\right)^2}\ge\frac{9}{\left(2+2\right)^2}=\frac{9}{16}\) vì khi đó a + b >0 nên (a+b)2 \(\le\left(2+2\right)^2=16\))

Xét \(-2\le a,b< 0\) thì a + b < 0 suy ra \(\left(a+b\right)^2< \left(-2+-2\right)^2=16\)

Từ 2 trường hợp trên ta suy ra \(\frac{9}{\left(a+b\right)^2}\ge\frac{9}{16}\).

Ta có: \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}\ge\frac{2}{ab}+\frac{1}{\left(a+b\right)^2}\ge\frac{8}{\left(a+b\right)^2}+\frac{1}{\left(a+b\right)^2}=\frac{9}{\left(a+b\right)^2}\ge\frac{9}{16}\)

Vậy...

P/s: Em ko chắc. @Nguyễn Việt Lâm: Em làm thế này có đúng ko ạ? Em ko chắc chỗ xét 2 th ấy, có giải thích quá....:((

Nguyen
Xem chi tiết
Nguyen Duy Dai
Xem chi tiết
tth_new
10 tháng 8 2020 lúc 10:21

Đề là GTLN nha bạn.

GTNN thì luôn là 4 với mọi x, y >0 theo AM-GM.

Khách vãng lai đã xóa
lý canh hy
Xem chi tiết
GG boylee
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết

\(A=\sqrt{x^2+y\left(y-2x\right)}+\sqrt{y^2+z\left(z-2y\right)}+\sqrt{x^2+z\left(z-2x\right)}\)

\(=\sqrt{x^2-2xy+y^2}+\sqrt{y^2-2yz-z^2}+\sqrt{x^2-2xz+z^2}\)

\(=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)

\(=x-y+y-z+z-x\)

\(=0\)

Nguyễn Lâm Vĩnh Phú
Xem chi tiết