Tìm max
\(A=3\sqrt{2x-1}+x\sqrt{5-4x^2}\left(\frac{1}{2}\le x\le\frac{\sqrt{5}}{2}\right)\)
\(B=\frac{xyz\left(x+y+z+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}\left(x,y,z>0\right)\)
Cho x,y là các số thực. CMR
\(-\frac{1}{4}\le\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\le\frac{1}{4}\)
TÌM GTNN CỦA HÀM SỐ SAU:
a) y=\(\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}\)
TÌM GTLN CỦA HÀM SỐ SAU:
b)y= \(x^2\sqrt{9-x^2}với-3\le x\le3\)
c)y=\(\left(1-x\right)^3\left(1+3x\right)với\dfrac{-1}{3}\le x\le1\)
Cho 3 số x,y,z thỏa mãn 0<x,y,z\(\le\)1 và x+y+z=2
Tìm GTNN của A=\(\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\)
Bài 1: Tìm min và max của \(A=x\left(x^2-6\right)\) biết \(0\le x\le3\)
Baì 2: Tìm max của \(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\) biết \(0\le x\le3\) và \(0\le y\le4\)
Bài 3: Cho a, b, c>0 và a+b+c=1. Tìm min của \(A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Bài 4: Cho 0<x<2. Tìm min của \(A=\frac{9x}{2-x}+\frac{2}{x}\)
a,Cho x,y,z tm \(\left\{{}\begin{matrix}x^2+y^2+z^2=8\\x+y+z=4\end{matrix}\right.\). CM: \(-\dfrac{8}{3}\le x\le\dfrac{8}{3}\)
b, cho \(x^2+3y^2=1\). Tìm GTLN, GTNN của\(P=x-y\)
c, Cho \(P=\dfrac{x^2-\left(x-4y\right)^2}{x^2+4y^2}\left(x^2+y^2>0\right)\)
Tìm GTLN của P
x,y,z >0 thỏa mãn \(y^2+z^2\le x^2\)
tìm GTNN của \(P=\frac{1}{x^2}\left(y^2+z^2\right)+x^2\left(\frac{1}{y^2}+\frac{1}{z^2}\right)\)
\(M^2=\left(\sqrt{x}+\sqrt{2y}\right)^2=\left(\frac{1}{_{\sqrt{\alpha}}}.\sqrt{\alpha x}+\sqrt{2y}\right)^2< =\left(\frac{1}{\alpha}+1\right)\left(\alpha x+2y\right)\)
\(\Rightarrow M^4\le\left(\frac{1}{\alpha}+1\right)^2\left(\alpha x+2y\right)^2\le\left(\frac{1}{\alpha}+1\right)^2\left(\alpha^2+4\right)\left(x^2+y^2\right)=\left(\frac{1}{\alpha}+1\right)^2\left(\alpha^2+4\right)\)
Dấu bằng xảy ra => \(\hept{\begin{cases}\frac{\alpha x}{\frac{1}{\alpha}}=\frac{2y}{1}\\\frac{\alpha}{x}=\frac{2}{y}\end{cases}}\Rightarrow\hept{\begin{cases}\alpha^2x=2y\\\alpha=\frac{2x}{y}\end{cases}\Rightarrow\hept{\begin{cases}\frac{\alpha^2}{2}=\frac{y}{x}\\\frac{\alpha}{2}=\frac{x}{y}\end{cases}}}\Rightarrow\frac{\alpha^2}{2}=\frac{1}{\frac{\alpha}{2}}\Rightarrow\alpha=\sqrt[3]{4}\)
Suy ra max = \(\sqrt[4]{\left(\frac{1}{\alpha}+1\right)^2\left(\alpha^2+4\right)}\) với \(\alpha=\sqrt[3]{4}\)
Cho \(0\le x,y,z\le3\) . Tìm GTLN của:
\(A=\sqrt{x^2+y\left(y-2x\right)}+\sqrt{y^2+z\left(z-2y\right)}+\sqrt{z\left(z-2x\right)+x^2}\)