Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
 ๖ۣۜFunny-Ngốkツ
Xem chi tiết
Pain Thiên Đạo
17 tháng 1 2018 lúc 20:48

hóng với ai biết làm chỉ công thức đê , cho chúa Pain  làm với :))

kici đặng
17 tháng 1 2018 lúc 22:22
mik gửi link qua rồi đó , nhận hàng đi
Phan Nghĩa
15 tháng 8 2020 lúc 9:32

\(A=\frac{3x^2+4}{4x}+\frac{2+y^3}{y^2}=\frac{3x^2}{4x}+\frac{4}{4x}+\frac{2}{y^2}+\frac{y^3}{y^2}\)

\(=\frac{3x}{4}+\frac{1}{x}+\frac{2}{y^2}+y=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{1}{2}x+\frac{1}{2}y+\frac{2}{y^2}+\frac{1}{2}y\)

\(=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{1}{2}\left(x+y\right)+\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\)

\(=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{x+y}{2}+\left(\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\right)\)

Áp dụng BĐT Cô-si ta có :

\(\frac{1}{x}+\frac{x}{4}\ge2\sqrt[2]{\frac{1}{x}.\frac{x}{4}}=2\sqrt[2]{\frac{x}{4x}}=2\sqrt[2]{\frac{1}{4}}=2.\frac{1}{2}=1\)

\(\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\ge3\sqrt[3]{\frac{2}{y^2}.\frac{y}{4}.\frac{y}{4}}=3\sqrt[3]{\frac{2.y.y}{y^2.4.4}}=3\sqrt[3]{\frac{2y^2}{16y^2}}=3.\sqrt[3]{\frac{1}{8}}=\frac{3}{2}\)

Và theo giả thiết ta có \(x+y\ge4\Leftrightarrow\frac{x+y}{2}\ge2\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\left(\frac{1}{x}+\frac{4}{x}\right)+\left(\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\right)+\frac{x+y}{2}\ge1+\frac{3}{2}+2=\frac{9}{2}\)

Dấu = xảy ra khi và chỉ khi \(x=y=2\)

Vậy \(Min_A=\frac{9}{2}\)đạt được khi \(x=y=2\)

Khách vãng lai đã xóa
Karin Korano
Xem chi tiết
Trần Thị Loan
2 tháng 6 2015 lúc 20:48

Đặt \(t=\frac{x}{y}+\frac{y}{x}\). Vì x; y > 0 => \(\frac{x}{y}>0;\frac{y}{x}>0\). Áp dung BDT Cô - si có:

\(t=\frac{x}{y}+\frac{y}{x}\ge2.\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)

Có: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}=\left(\frac{x}{y}+\frac{y}{x}\right)^2-2.\frac{x}{y}.\frac{y}{x}=t^2-2\)

\(\frac{x^4}{y^4}+\frac{y^4}{x^4}=\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)^2-2.\frac{x^2}{y^2}.\frac{y^2}{x^2}=\left(t^2-2\right)^2-2=t^4-4t^2+4-2=t^4-4t^2+2\)

Vậy \(A=t^4-4t^2+2-\left(t^2-2\right)+t=t^4-5t^2+t+4\)

=> \(A=\left(t^4-8t^2+16\right)+3t^2+t-12=\left(t^2-4\right)^2+3t^2+t-12=\left(t^2-4\right)^2+3\left(t^2-4\right)+t\ge2\)với mọi \(t\ge2\)

Vì \(t\ge2\) => \(t^2\ge4\Rightarrow t^2-4\ge0\)

Vậy Min A = 2 khi t = 2 <=> \(\frac{x}{y}+\frac{y}{x}=2\) <=> x = y = 1

 

Ngoc Nhi Tran
Xem chi tiết
như phạm
Xem chi tiết
Nguyệt
2 tháng 12 2018 lúc 21:46

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

Nguyệt
2 tháng 12 2018 lúc 21:51

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

như phạm
3 tháng 12 2018 lúc 0:03

Thanks. <3

Quốc Sơn
Xem chi tiết
Sói Xông Lam
Xem chi tiết
Bùi Khắc Tuấn Khải
Xem chi tiết
Thắng Nguyễn
12 tháng 6 2016 lúc 21:52

bài này bạn dùng AM-GM là ra à

Cầm Dương
Xem chi tiết
dekhisuki
Xem chi tiết
Phùng Minh Quân
30 tháng 5 2020 lúc 15:50

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

Khách vãng lai đã xóa