Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Ngoc Hai Anh
Xem chi tiết
Lưu Thi Thi
21 tháng 8 2016 lúc 15:03

Câu a =13 

Câu b =2 con câu c lam tuong tu 

Trần Trung Hiếu
29 tháng 10 2016 lúc 15:45

tại sao caí bài này  ko làm đcj

Trần Trung Hiếu
29 tháng 10 2016 lúc 15:47
câu c cũng khó
♥➴Hận đời FA➴♥
Xem chi tiết
Anh Đỗ Ngọc
Xem chi tiết
Vũ Minh Anh
Xem chi tiết
Đoàn Đức Hà
9 tháng 3 2021 lúc 17:11

Giả sử tồn tại số \(p\)thỏa mãn. 

Ta đặt \(\frac{p^2-p-2}{2}=a^3\).

\(p=2\)thỏa mãn.

\(p>2\)do là số nguyên tố nên \(p\)lẻ.

Ta có: \(\frac{p^2-p-2}{2}=a^3\Leftrightarrow p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)\)suy ra \(p\)là ước của \(a+1\)hoặc \(a^2-a+1\).

+) \(p|a+1\)\(\frac{p^2-p-2}{2}=a^3\)suy ra \(a< p\Rightarrow a+1=p\).

Thế vào cách đặt ban đầu ta được \(\frac{\left(a+1\right)^2-\left(a+1\right)-2}{2}=a^3\Leftrightarrow2a^3-a^2-a+2=0\)

\(\Leftrightarrow a=-1\)không thỏa. 

+) \(p|a^2-a+1\): Đặt \(a^2-a+1=kp\)(1).

\(p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)=2\left(a+1\right)kp\)

\(\Rightarrow p-1=2\left(a+1\right)k\Leftrightarrow p=2k\left(a+1\right)+1\)thế vào (1): 

\(a^2-a+1=k\left[2k\left(a+1\right)+1\right]\)

\(\Leftrightarrow a^2-\left(2k^2+1\right)a-2k^2-k+1=0\)

\(\Delta=\left(2k^2+1\right)^2-4\left(-2k^2-k+1\right)=4k^4+12k^2+4k-3\).

Ta cần tìm số tự nhiên \(k\)để \(\Delta\)là số chính phương. 

Ta có: \(4k^4+12k^2+4k-3>4k^4+8k^2+4=\left(2k^2+2\right)^2\)

\(4k^4+12k^2+4k-3< 4k^4+16k^2+16=\left(2k^2+4\right)^2\)

Theo nguyên lí kẹp suy ra \(4k^4+12k^2+4k-3=\left(2k^2+3\right)^2\)

\(\Leftrightarrow4k-3=9\Leftrightarrow k=3\).

Với \(k=3\)\(a^2-19a-20=0\Rightarrow a=20\Rightarrow p=127\).

Vậy \(p\in\left\{2,127\right\}\).

Khách vãng lai đã xóa
ghgfh ghsjg
Xem chi tiết
Quân Tạ Minh
Xem chi tiết
v bts
24 tháng 9 2017 lúc 19:52

mị lớp > chị nên đừng hỏi tui cái này

Phạm Kim Oanh
Xem chi tiết
Nguyen Duc Minh
Xem chi tiết
Lê Khánh Toàn
Xem chi tiết
Trần Ngọc Ngân Hà
20 tháng 8 lúc 8:45

555