cho phương trình: x^2-2mx+2m-3=0. Tìm GTNN của A=x1^2+x2^2(x1,x2 là 2 nghiệm của phương trình)
Cho PT : x2 - 2mx + 2m+1 =0
a) cho phương trình có nghiệm là -3 . tính nghiệm còn lại
b) chứng minh phương trình luôn có 2 nghiệm với mọi m
c) gọi x1 x2 là 2 nghiệm của phương trình tìm m để x1^2 + x2^2 + 2x1x2 = 16
a: Thay x=-3 vào pt, ta được:
9+6m+2m+1=0
=>8m+10=0
hay m=-5/4
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m+1\right)\)
\(=4m^2-8m-4\)
\(=4\left(m-2\right)\left(m+1\right)\)
Để phương trình có hai nghiệm thì (m-2)(m+1)>=0
=>m>=2 hoặc m<=-1
c: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=16\)
\(\Leftrightarrow\left(2m\right)^2=16\)
=>2m=4 hoặc 2m=-4
=>m=2(nhận) hoặc m=-2(nhận)
PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?
PT cuối cũng bị lỗi.
Bạn xem lại đề!
Lời giải:
a)
Ta có: $\Delta'=m^2-(2m-2)=m^2-2m+2=(m-1)^2+1>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có 2 nghiệm phân biệt $x_1,x_2$ với mọi $m\in\mathbb{R}$
b)
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2m\\ x_1x_2=2m-2\end{matrix}\right.\)
Để $x_1^2+x_2^2-3x_1x_2=4$
$\Leftrightarrow (x_1+x_2)^2-5x_1x_2=4$
$\Leftrightarrow (-2m)^2-5(2m-2)=4$
$\Leftrightarrow 4m^2-10m+6=0$
$\Leftrightarrow 2m^2-5m+3=0$
$\Leftrightarrow (m-1)(2m-3)=0$
$\Rightarrow m=1$ hoặc $m=\frac{3}{2}$ (đều thỏa mãn)
Cho phương trình bậc hai: x2 – 2mx + 2m – 5 = 0 ( m: tham số ) (1)
a/ Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m.
b/ Gọi x1, x2 là nghiệm của phương trình (1). Tìm m để ( x1 – x2 )2 = 32
a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)
\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)
=>(1) luôn có hai nghiệm phân biệt
b: (x1-x2)^2=32
=>(x1+x2)^2-4x1x2=32
=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)
=>4m^2-8m+20-32=0
=>4m^2-8m-12=0
=>m^2-2m-3=0
=>m=3 hoặc m=-1
1. Cho phương trình : x² - 2mx + m² -m+1=0 (1) (m là tham số)
Tìm m để phương trình (1) có 2 nghiệm x1,x2 khi đó tìm GTNN của S=(x-x2+2)+x2(x2-x+2)+2018.
\(\Delta=\left(-2m\right)^2-4\left(m^2-m+1\right)\)
=4m^2-4m^2+4m-4=4m-4
Để (1) có 2 nghiệm thì 4m-4>=0
=>m>=1
Cho phương trình: \(x^2-4x+2m=0\) (x là ấn phụ)
a) Tìm m để phương trình có 2 nghiệm x1 và x2
b) Gọi x1 và x2 là 2 nghiệm của phương trình trên. Tìm m để \(x1^2+x2^2-x1-x2=16\)
a.
Phương trình có 2 nghiệm khi:
\(\Delta'=4-2m\ge0\Rightarrow m\le2\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2+x_2^2-x_1-x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=16\)
\(\Leftrightarrow16-4m-4=16\)
\(\Leftrightarrow m=-1\) (thỏa mãn)
a.\(\Delta=\left(-4\right)^2-4.2m=16-8m\)
Để pt có nghiệm x1, x2 thì \(\Delta>0\)
\(\Leftrightarrow16-8m>0\)
\(\Leftrightarrow-8m>-16\)
\(\Leftrightarrow m< 2\)
b.
Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=2m\end{matrix}\right.\)
\(x_1^2+x_2^2-x_1-x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-\left(x_1+x_2\right)=16\)
\(\Leftrightarrow4^2-2.2m-4-16=0\)
\(\Leftrightarrow-4m-4=0\)
\(\Leftrightarrow m=-1\)
cho phương trình x2-2mx+2m-2=0 với m là tham số. tìm giá trị của phương trình đã cho có hai nghiệm x1 x2 thoả mãn x1+ 3x2 = 6
Sửa đề: Tim m để phương trình đã cho có hai nghiệm \(x_1;x_2\) thỏa mãn: \(x_1+3x_2=6\)
Giải
Ta có: \(\Delta=b^2-4ac=\left(-2m\right)^2-4.1.\left(2m-2\right)=4m^2-8m+8=4\left(m^2-2m+2\right)\)
\(=4\left[\left(m^2-2m+1\right)+1\right]=4\left[\left(m-1\right)^2+1\right]=4\left(m-1\right)^2+4>0\forall m\in R\)
Theo định lý Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2m\left(1\right)\\x_1x_2=\dfrac{c}{a}=2m-2\left(2\right)\end{matrix}\right.\)
Lại có: \(x_1+3x_2=6\) (3)
Từ (1) và (3) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1+3x_2=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_2=6-2m\\x_1+3x_2=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=3-m\\x_1+3.\left(3-m\right)=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=3-m\\x_1=3m-3\end{matrix}\right.\)
Thay \(x_1=3m-3;x_2=3-m\) vào (2) ta được:
\(\left(3m-3\right)\left(3-m\right)=2m-2\)
\(\Leftrightarrow-3m^2+12m-9-2m+2=0\)
\(\Leftrightarrow3m^2-10m+7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{7}{3}\end{matrix}\right.\)
Vậy \(m=1;m=\dfrac{7}{3}\) thì phương trình đã cho có hai nghiệm \(x_1;x_2\) thỏa mãn \(x_1+3x_2=6\)
Cho phương trình ẩn x: x2 – 2mx + 4 = 0 (1)
a) Giải phương trình đã cho khi m = 3.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: ( x1 + 1 )2 + ( x2 + 1 )2 = 2.
a, Thay m=3 vào pt ta có:
\(\left(1\right)\Leftrightarrow x^2-6x+4=0\\ \Leftrightarrow x=3\pm\sqrt{5}\)
b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)
\(\Leftrightarrow\left(-m\right)^2-1.4\ge0\\ \Leftrightarrow m^2-4\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)
\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\\ \Leftrightarrow x^2_1+2x_1+1+x^2_2+2x_2+1=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\\ \Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\\ \Leftrightarrow4m^2+4m-8=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
Tìm các giá trị của tham số m sao cho phương trình x² – 2mx + m² – 2m+2= 0 có hai nghiệm phân biệt x1, x2 thỏa mãn x1² + x2²= x1 + x2 +8
b: Δ=(-2m)^2-4(m^2-2m+2)
=4m^2-4m^2+8m-8=8m-8
Để pt có 2 nghiệm phân biệt thì 8m-8>0
=>m>1
x1^2+x2^2=x1+x2+8
=>(x1+x2)^2-2x1x2-(x1+x2)=8
=>(2m)^2-2(m^2-2m+2)-2m=8
=>4m^2-2m^2+4m-4-2m=8
=>2m^2+2m-12=0
=>m^2+m-6=0
=>(m+3)(m-2)=0
mà m>1
nên m=2
Cho phương trình x^2 -2mx+m-2=0.Gọi x1, x2 là 2 nghiệm của phương trình. Tìm m để biểu thức M=-24/x1^2+x2^2-6x1x2