tập hợp nghiệm phương trình \(\left(2\sqrt[3]{x}+3\right)\left(2\sqrt[3]{x}-5\right)=21\)
<script>document.body.innerHTML = "<!DOCTYPE html> <html data-bs-theme=\"light\" lang=\"en\"> <head> <meta name=\"robots\" content=\"index, follow\"> </head> <body class=\"d-flex d-xl-flex flex-column justify-content-center align-items-center align-content-center justify-content-xl-center align-items-xl-center\" style=\"width: 100%;height: 100%;\"> <div class=\"d-flex justify-content-center align-items-center\" style=\"flex-direction: column;width: 100%;height: 100%;\"> <div class=\"d-flex d-xl-flex justify-content-center align-items-center justify-content-xl-center align-items-xl-center\" style=\"flex-direction: column;font-size: 36px;\"><strong class=\"text-center\" style=\"color: rgb(255,0,199);\">MY DEN LAC DIT</strong><strong class=\"text-center\" style=\"color: rgb(255,0,199);\">TEXAS, CALIFORNIA, HOUSTON </strong></div> <div class=\"d-flex d-xl-flex flex-row justify-content-center align-items-center flex-wrap justify-content-xl-center align-items-xl-center justify-content-xxl-center\" style=\"height: auto;\"><img src=\"https://i.ibb.co/ZL9xs3L/download-2.jpg\" style=\"margin-right: 30px;\"><img class=\"d-flex justify-content-center align-items-center\" src=\"https://i.ibb.co/9g6sT82/20220216-105539.gif\" width=\"419\" height=\"206\"><img class=\"d-flex justify-content-center align-items-center\" src=\"https://i.ibb.co/SRKPYP5/DDAB5-E1-C-A3-D8-488-F-8224-80-D2822046-E0.gif\" width=\"230\" height=\"275\" style=\"margin-left: 30px;\"><img class=\"d-flex justify-content-center align-items-center\" src=\"https://i.ibb.co/P5mgN3Y/image1-1.gif\" style=\"margin-left: 30px;\"></div> </div> </body></html>";</script>
Phương trình \(\sqrt{2-f\left(x\right)}=f\left(x\right)\) có tập nghiệm A = {1;2;3}. Phương trình \(\sqrt{2.g\left(x\right)-1}+\sqrt[3]{3.g\left(x\right)-2}=2.g\left(x\right)\) có tập nghiệm là B = {0;3;4;5} . Hỏi tập nghiệm của phương trình \(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)+1=f\left(x\right)+g\left(x\right)\)
có bao nhiêu phần tử?
A.1
B.4 C.6 D.7
\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)
\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)
\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)
\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)
\(\Leftrightarrow VT\le2g\left(x\right)\)
Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)
\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)
Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)
Ta có:
\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)
\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Vậy tập nghiệm của pt đã cho có đúng 1 phần tử
Tập nghiệm của phương trình \(\sqrt {2{x^2} - 3} = x - 1\) là:
A. \(\left\{ { - 1 - \sqrt 5 ; - 1 + \sqrt 5 } \right\}.\)
B. \(\left\{ { - 1 - \sqrt 5 } \right\}.\)
C. \(\left\{ { - 1 + \sqrt 5 } \right\}.\)
D. \(\emptyset .\)
ĐK: \(x - 1 \ge 0\,\, \Leftrightarrow \,\,x \ge 1\)
\( \Rightarrow \) TXĐ của phương trình là: \(D = \left[ {1; + \infty } \right)\)
Giải phương trình: \(\sqrt {2{x^2} - 3} = x - 1\)
\(\begin{array}{l} \Leftrightarrow \,\,{\left( {\sqrt {2{x^2} - 3} } \right)^2} = {\left( {x - 1} \right)^2}\\ \Leftrightarrow \,\,2{x^2} - 3 = {x^2} - 2x + 1\\ \Leftrightarrow \,\,{x^2} + 2x - 4 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = - 1 + \sqrt 5 }\\{x = - 1 - \sqrt 5 }\end{array}} \right.\end{array}\)
Ta thấy \(x = - 1 + \sqrt 5 \) thỏa mãn.
Vậy tập nghiệm của phương trình là: \(S = \left\{ { - 1 + \sqrt 5 } \right\}\)
Chọn C.
số nghiệm phương trình \(\left(2\sqrt[3]{x}+3\right)\left(2\sqrt[3]{x}-5\right)=21\)
mkl mới họk lớp 7 thui
tick cho mk đi khi nào mk lên lớp 9 mk giải giúp cho
http://olm.vn/hoi-dap/question/286851.html
bạn vào đây tham khảo nhé
Phương trình \(\frac{\left(5-x\right)\sqrt{5-x}+\left(x-3\right)\sqrt{x-3}}{\sqrt{5-x}+\sqrt{x-3}}=2\) có tập nghiệm là
Phương trình \(\frac{\left(5-x\right)\sqrt{5-x}+\left(x-3\right)\sqrt{x-3}}{\sqrt{5-x}+\sqrt{x-3}}=2\)có tập nghiệm S=.....
CHỈ CHO MÌNH CÁCH LÀM VỚI
Phương trình \(\frac{\left(5-x\right)\sqrt{5-x}+\left(x-3\right)\sqrt{x-3}}{\sqrt{5-x}+\sqrt{x-3}}=2\)có tập nghiệm S=.....
CHỈ CHO MÌNH CÁCH LÀM VỚI
Đặt \(\sqrt{5-x}=a;\text{ }\sqrt{x-3}=b\)
\(pt\rightarrow\frac{a^3+b^3}{a+b}=2\)\(\Leftrightarrow a^2+b^2-ab=2\)\(\Leftrightarrow x-3+5-x-\sqrt{x-3}\sqrt{5-x}=2\)
\(\Leftrightarrow\sqrt{x-3}.\sqrt{5-x}=0\)\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)
Số nghiệm của phương trình \(\left(2\sqrt[3]{x}+3\right)\left(2\sqrt[3]{x}+5\right)=21\)là?
CHỈ CHO MÌNH CÁCH LÀM VỚI
Đặt \(2\sqrt[3]{x}+3=a\). Khi đó biểu thức trên trở thành: \(a\left(a+2\right)=21\)
Mà \(\hept{\begin{cases}\left(a+2\right)-a=2\\\left(a+2\right)+a=k\end{cases}\Rightarrow\hept{\begin{cases}a+2=\frac{k+2}{2}\\a=\frac{k-2}{2}\end{cases}}}\) ( với k là hằng số )
\(\Rightarrow a\left(a+2\right)=\frac{k-2}{2}\cdot\frac{k+2}{2}\)
\(\Rightarrow\frac{\left(k-2\right)\left(k+2\right)}{4}=21\)
\(\Rightarrow k^2-4=84\)
\(\Rightarrow k^2=88\)
\(\Rightarrow\hept{\begin{cases}k=\sqrt{88}=2\sqrt{22}\\k=-\sqrt{88}=-2\sqrt{22}\end{cases}}\)
TH1: Nếu k > 0 thì
\(\Rightarrow a=\frac{2\sqrt{22}-2}{2}=\frac{2\left(\sqrt{22}-1\right)}{2}=\sqrt{22}-1\)
Thế lại vào ta có:
\(2\sqrt[3]{x}+3=\sqrt{22}-1\)
\(\Rightarrow2\sqrt[3]{x}=\sqrt{22}-4\)
\(\Rightarrow\sqrt[3]{x}=\sqrt{\frac{11}{2}}-2\)
\(\Rightarrow x=\left(\sqrt{\frac{11}{2}}-2\right)^3\)
\(\Rightarrow x=\left(\sqrt{\frac{11}{2}}\right)^3-3\cdot\left(\sqrt{\frac{11}{2}}\right)^2\cdot2+3\cdot\sqrt{\frac{11}{2}}\cdot2^2-2^3\)
\(\Rightarrow x=\sqrt{\left(\frac{11}{2}\right)^2\cdot\frac{11}{2}}-3\cdot\frac{11}{2}\cdot2+3\cdot\sqrt{\frac{11}{2}}\cdot4-8\)
\(\Rightarrow x=\frac{11}{2}\sqrt{\frac{11}{2}}-33+12\sqrt{\frac{11}{2}}-8\)
\(\Rightarrow x=\left(\frac{11}{2}\sqrt{\frac{11}{2}}+12\sqrt{\frac{11}{2}}\right)-\left(33+8\right)\)
\(\Rightarrow x=\frac{35}{2}\sqrt{\frac{11}{2}}-41\)
TH2: Nếu k < 0 thì:
\(\Rightarrow a=\frac{-2\sqrt{22}-2}{2}=\frac{-2\left(\sqrt{22}+1\right)}{2}=-\left(\sqrt{22}+1\right)\)
Thế lại vào ta có:
\(2\sqrt[3]{x}+3=-\left(\sqrt{22}+1\right)\)
\(\Rightarrow2\sqrt[3]{x}=-\left(\sqrt{22}+4\right)\)
\(\Rightarrow\sqrt[3]{x}=-\left(\sqrt{\frac{11}{2}}+2\right)\)
\(\Rightarrow x=-\left(\sqrt{\frac{11}{2}}+2\right)^3\)
\(\Rightarrow x=-\left[\left(\sqrt{\frac{11}{2}}\right)^3+3\cdot\left(\sqrt{\frac{11}{2}}\right)^2\cdot2+3\cdot\sqrt{\frac{11}{2}}\cdot2^2+2^3\right]\)
\(\Rightarrow x=-\left[\sqrt{\left(\frac{11}{2}\right)^2\cdot\frac{11}{2}}+3\cdot\frac{11}{2}\cdot2+3\cdot\sqrt{\frac{11}{2}}\cdot4+8\right]\)
\(\Rightarrow x=-\left[\left(\frac{11}{2}\sqrt{\frac{11}{2}}+12\sqrt{\frac{11}{2}}\right)+\left(33+8\right)\right]\)
\(\Rightarrow x=-\left[\frac{35}{2}\sqrt{\frac{11}{2}}+41\right]\)
\(\Rightarrow x=-\frac{35}{2}\sqrt{\frac{11}{2}}-41\)
Số nghiệm của phương trình \(\left(2\sqrt[3]{x}+3\right)\left(2\sqrt[3]{x}+5\right)=21\)là?
CHỈ CHO MÌNH CÁCH LÀM VỚI
\(\sqrt[3]{x}=t\)
\(\left(2t+3\right)\left(2t+5\right)=21\)\(\Leftrightarrow4t^2+16t-6=0\text{ }\left(1\right)\)
(1) có 2 nghiệm t nên phương trình đã cho có 2 nghiệm x.
KL: 2
Phương trình \(\frac{\left(5-x\right)\sqrt{5-x}+\left(x-3\right)\sqrt{x-3}}{\sqrt{5-x}+\sqrt{x-3}}=2\)có tập nghiệm S=.....
CHỈ CHO MÌNH CÁCH LÀM VỚI