Cho S = 3/11+3/12+3/13+3/14
Chứng minh rằng 1<S<2 từ đó suy ra S không phải là số tự nhiên
Cho S = 3/11+3/12+3/13+314
Chứng minh rằng 1<S<2 từ đó suy ra S không phải là số tự nhiên
Giải
\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
\(\Rightarrow S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)
\(\Leftrightarrow S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}< \frac{20}{10}=2\)
Vậy 1 < S < 2 suy ra S không phải là số tự nhiên.
Giúp mình với các bạn ơi:
Cho S=3/10+3/11+3/12+3/13+3/14
Chứng minh rằng S không phải số tư nhiên
Giải giúp bài này nữa nhé:
Tìm m, n thuộc Z, sao cho 1/m + n/6= 1/2
Giúp mình nhanh nhé
Ta có :
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)
\(\Rightarrow S< \frac{3}{10}.5\)
\(\Rightarrow S< 1,5\left(1\right)\)
Lại có :
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)
\(\Rightarrow S>\frac{3}{15}.5\)
\(\Rightarrow S>1\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow1< S< 1,5\)
\(\Rightarrow S\)ko phải là STN
Hỏa Long Natsu ơi, bạn giải giúp mình một bài nữa đi
Ta có:
\(\frac{1}{m}+\frac{n}{6}=\frac{1}{2}\)
\(\frac{1}{m}=\frac{1}{2}-\frac{n}{6}\)
\(\frac{1}{m}=3-\frac{n}{6}\)
\(\frac{6}{6m}=\frac{\left(3-n\right)m}{6m}\)
\(\left(3-n\right)m=6\Rightarrow\left(-1\right)\left(-6\right)=\left(-2\right).\left(-3\right)=1.6=2.3\)
Đến đây mời bạn xét bảng ><
Cho A = 1/11 + 1/12 + 1/13 +.....+ 1/70
Chứng minh rằng :
a) A > 4/3
b) A < 2,5
Cho S = 3/10 + 3/11+3/12+3/13+3/14 . Chứng minh rằng 1 nhỏ hơn S nhỏ hơn 2
\(S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
\(\Rightarrow S< \dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}\)
\(\Rightarrow S< \dfrac{15}{10}< 2\)
Lại có \(S>\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}\)
\(\Rightarrow S>\dfrac{15}{14}>1\)
\(\Rightarrow1< S< 2\)
Cho S = 3/10 + 3/11+3/12+3/13+3/14 . Chứng minh rằng 1 nhỏ hơn S nhỏ hơn 2
Cho S= 3/1+3/11+3/12+3/13+3/14
Chung minh rang 1<S<2
* S = 3/10+3/11+3/12+3/13+3/14 < 3/10 + 3/10+3/10+3/10+3/10
< 3/10 x 5
< 3/2 < 2sư
* S = 3/10+3/11+3/12+3/13+3/14 > 3/15+3/15+3/15+3/15+3/15
> 3/15 x 5
> 1
CHỨNG TỎ ........
> 1
Cho S= \(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
Chứng minh rằng: 1<S<2
Ta có: \(\dfrac{3}{10}>\dfrac{3}{15}\)
\(\dfrac{3}{11}>\dfrac{3}{15}\)
\(\dfrac{3}{12}>\dfrac{3}{15}\)
\(\dfrac{3}{13}>\dfrac{3}{15}\)
\(\dfrac{3}{14}>\dfrac{3}{15}\)
Do đó: \(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}=1\)
hay 1<S(1)
Ta có: \(\dfrac{3}{11}< \dfrac{3}{10}\)
\(\dfrac{3}{12}< \dfrac{3}{10}\)
\(\dfrac{3}{13}< \dfrac{3}{10}\)
\(\dfrac{3}{14}< \dfrac{3}{10}\)
Do đó: \(\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< \dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}=\dfrac{12}{10}\)
\(\Leftrightarrow S< \dfrac{15}{10}=\dfrac{3}{2}< 2\)(2)
Từ (1) và (2) suy ra 1<S<2(đpcm)
Cho S=3/10+3/11+3/12+3/13+3/14 Chứng minh:1<S<2
\(S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
Ta thấy:
\(\dfrac{3}{10}>\dfrac{3}{15}\\\dfrac{3}{11}>\dfrac{3}{15}\\ \dfrac{3}{12}>\dfrac{3}{15}\\ \dfrac{3}{13}>\dfrac{3}{15}\\ \dfrac{3}{14}>\dfrac{3}{15} \)
\(\Rightarrow S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>5\cdot\dfrac{3}{15}\\ S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>1\left(1\right)\)
Mặt khác:
\(\dfrac{3}{10}< \dfrac{3}{9}\\ \dfrac{3}{11}< \dfrac{3}{9}\\ \dfrac{3}{12}< \dfrac{3}{9}\\ \dfrac{3}{13}< \dfrac{3}{9}\\ \dfrac{3}{14}>\dfrac{3}{9}\)
\(\Rightarrow S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< 5\cdot\dfrac{3}{9}\\ S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< \dfrac{5}{3}< 2\left(2\right)\)
Từ (1) và (2) ta có: \(1< S< 2\)
a)Cho S = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2012!}.\) Chứng minh rằng S< 2
b)Chứng minh rằng :\(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+\frac{99}{100!}< \frac{1}{9!}\)
Ai làm nhanh mk l*** cho nhé !
sửa đề : \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...+\frac{99}{100!}\)
\(=\frac{10-1}{10!}+\frac{11-1}{11!}+\frac{12-1}{12!}+...+\frac{100-1}{100!}\)
\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(=\frac{1}{9!}-\frac{1}{100!}< \frac{1}{9!}\left(đpcm\right)\)