Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tớ đây giốt lắm
Xem chi tiết
tth_new
18 tháng 12 2018 lúc 8:28

Câu 2 hình như sai đề bạn ey.

tth_new
18 tháng 12 2018 lúc 8:33

Câu 1: 

Đầu tiên,ta chứng minh BĐT phụ (mang tên Cô si): \(x+y\ge2\sqrt{xy}\)

Thật vậy,điều cần c/m  \(\Leftrightarrow x+y-2\sqrt{xy}\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) (luôn đúng)

Vậy BĐT phụ (Cô si) là đúng.

----------------------------------------------------------

Áp dụng BĐT Cô si,ta có: \(2\sqrt{x}=2\sqrt{1x}\le x+1\)

Do đó: 

\(B=\frac{2\sqrt{x}}{x+1}\le\frac{x+1}{x+1}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

tớ đây giốt lắm
18 tháng 12 2018 lúc 8:33

mk nghĩ cả hai câu sai nhưng xem lại đề giống y chang 

Nguyễn Như Quỳnh
Xem chi tiết
Thanh Tùng DZ
28 tháng 4 2019 lúc 16:13

Câu hỏi của Nguyễn Ngọc Minh - Toán lớp 8 - Học toán với OnlineMath

Thanh Tùng DZ
28 tháng 4 2019 lúc 16:14

https://olm.vn/hoi-dap/detail/218795397469.html

ĐẶNG QUỐC SƠN
Xem chi tiết
nguyen nguyet anh
Xem chi tiết
RF huy
Xem chi tiết
Nguyễn Ngọc Khanh (Team...
1 tháng 10 2020 lúc 15:43

+) \(5\frac{2}{3}x+1\frac{2}{3}=4\frac{1}{2}\Leftrightarrow\frac{17}{3}x+\frac{5}{3}=\frac{9}{2}\Leftrightarrow\frac{17}{3}x=\frac{17}{6}\Leftrightarrow x=\frac{1}{2}\)

+) \(\frac{x}{27}=\frac{-2}{9}\Leftrightarrow x=\frac{-2}{9}.27=-6\)

+) \(\left|x+1,5\right|=2\Leftrightarrow\orbr{\begin{cases}x+1,5=2\\x+1,5=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,5\\x=-3,5\end{cases}}}\)

+) \(A=\left|x-1004\right|-\left|x+1003\right|\)

Ta có BĐT \(\left|x\right|-\left|y\right|\le\left|x-y\right|,\)dấu "=" xảy ra khi và chỉ khi x,y cùng dấu hay \(xy\ge0\)

Áp dụng: \(A=\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|=\left|-2007\right|=2007\)

Vậy \(maxA=2007\Leftrightarrow\left(x-1004\right)\left(x+1003\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge1004\\x\le-1003\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Thành Đạt
Xem chi tiết
Phan Nghĩa
21 tháng 2 2021 lúc 15:49

Từ giả thiết \(=>x+y=2xy\)

Áp dụng bđt Cô-si ta có : 

\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y\)

\(y^4+x^2\ge2\sqrt{y^4x^2}=2y^2x\)

Khi đó : \(C\le\frac{1}{2}\left[\frac{1}{xy\left(x+y\right)}+\frac{1}{xy\left(x+y\right)}\right]=\frac{1}{2}.\frac{2}{xy\left(x+y\right)}=\frac{1}{xy\left(x+y\right)}\)

đến đây dễ rồi ha

Khách vãng lai đã xóa
Phan Nghĩa
21 tháng 2 2021 lúc 15:56

oke làm tiếp 

Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}< =>2\ge\frac{4}{x+y}< =>x+y\ge2\)

Mặt khác \(C\le\frac{1}{xy\left(x+y\right)}=\frac{1}{\frac{\left(x+y\right)}{2}.\left(x+y\right)}=\frac{2}{\left(x+y\right)^2}\le\frac{1}{2}\)

Vậy GTLN của C = 1/2 đạt được khi x=y=1

Khách vãng lai đã xóa
Nguyễn Trọng Long
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 7 2016 lúc 16:49

Đặt \(t=x^2,t\ge0\)\(\Rightarrow M=\frac{4t}{t^2+1}\)

Với t = 0 => M = 0Với \(t\ne0\), ta có M đạt giá trị lớn nhất <=> \(\frac{1}{M}\)đạt giá trị nhỏ nhất

Xét : \(\frac{1}{M}=\frac{t^2+1}{4t}=\frac{t}{4}+\frac{1}{4t}=\frac{1}{4}\left(t+\frac{1}{t}\right)\ge\frac{1}{4}.2=\frac{1}{2}\)

Do đó, \(M\ge2\). Dấu "=" xảy ra \(\Leftrightarrow t=\frac{1}{t}\Leftrightarrow t=1\)( t > 0 ) \(\Rightarrow x=\pm1\)

Vậy M đạt giá trị nhỏ nhất bằng 2 , khi \(x=\pm1\)

Lê Thụy Sĩ
Xem chi tiết
cao van duc
10 tháng 7 2018 lúc 21:14

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

HUYNHTRONGTU
4 tháng 5 2021 lúc 15:00

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

Khách vãng lai đã xóa
Lê Thụy Sĩ
Xem chi tiết